Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Design and Performance of a 140 KVA, 3 Phase, 230 VAC, Variable Frequency, Solid State Power Controller

1997-06-18
971246
This paper describes the design and testing of a three phase, 200 Amp. per phase, AC power controller intended to replace electromechanical bus tie and cross tie contactors in commercial aircraft electric power systems. In order to design an effective overall electric power system, both the primary transmission subsystem and the secondary distribution subsystem must operate together, controlling the flow of power in a seamless fashion. This is not possible using electromechanical contactors in the primary subsystem.
Technical Paper

Current Riveting/Fastening Methodology and Future Assembly Equipment Philosophy

1996-10-01
961866
This paper is focusing on considerations pertaining to riveting/fastening systems and assembly methodology currently in use for large aircraft fuselage structures. Discussion of process principles on which current systems are based is addressing distribution of rivets along the aircraft structure, riveting/fastening systems and equipment flexibility. An attempt was made to predict the most probable future equipment development trends based on the need for more efficiency in all aircraft structural assembly and in high level and final assembly areas.
Technical Paper

Space Station Freedom Resource Nodes Internal Thermal Control System

1993-07-01
932148
This paper presents an overview of the design and operation of the internal thermal control system (ITCS) developed for Space Station Freedom by the NASA-Johnson Space Center and McDonnell Douglas Aerospace to provide cooling for the resource nodes, airlock, and pressurized logistics modules. The ITCS collects, transports, and rejects waste heat from these modules by a dual-loop, single-phase water cooling system. ITCS performance, cooling, and flow rate requirements are presented. An ITCS fluid schematic is shown and an overview of the current baseline system design and its operation is presented. Assembly sequence of the ITCS is explained as its configuration develops from Man Tended Capability (MTC), for which node 2 alone is cooled, to Permanently Manned Capability (PMC) where the airlock, a pressurized logistics module, and node 1 are cooled, in addition to node 2.
X