Refine Your Search

Topic

Search Results

Technical Paper

Investigation of Stator Cooling Concepts of an Electric Machine for Maximization of Continuous Power

2024-07-02
2024-01-3014
With the automotive industry's increasing focus on electromobility and the growing share of electric cars, new challenges are arising for the development of electric motors. The requirements for torque and power of traction motors are constantly growing, while installation space, costs and weight are increasingly becoming limiting factors. Moreover, there is an inherent conflict in the design between power density and efficiency of an electric motor. Thus, a main focus in today's development lies on space-saving and yet effective and innovative cooling systems. This paper presents an approach for a multi-physical optimization that combines the domains of electromagnetics and thermodynamics. Based on a reference machine, this simulative study examins a total of nine different stator cooling concepts varying the cooling duct positions and end-winding cooling concepts.
Journal Article

Comprehensive Evaluation of Logging Frameworks for Future Vehicle Diagnostics

2023-06-26
2023-01-1223
More and more applications (apps) are entering vehicles. Customers would like to have in-car apps in their infotainment system, which they already use regularly on their smartphones. Other apps with new functionalities also inspire vehicle customers, but only as long as the customer can utilize them. To ensure customer satisfaction, it is important that these apps work and that failures are found and corrected as quickly as possible. Therefore, in-car apps also implicate requirements for future vehicle diagnostics. This is because current vehicle diagnostic methods are not designed for handling dynamic software failures of apps. Consequently, new diagnostic methods are needed to support the diagnosis of in-car apps. Log data are a central building block in software systems for system health management or troubleshooting. However, there are different types of log data and log environment setups depending on the underlying system or software platform.
Technical Paper

Analysis of the Optimal Operating Strategy of a P24-Hybrid for Different Electric Power Distributions in Charge-Depleting and Charge-Sustaining Operation

2021-09-05
2021-24-0108
In order to adhere with future automotive legislation and incentives, the electric range of plug-in hybrids has steadily increased. At the same time, the installed electric power has risen as well leading to future hybrid vehicles with an electric power share of more than half of overall system power and hybrid configurations with at least two electrical machines come into focus. The concept of adding a separate electrical axle to a P2-hybrid - a so called P24-hybrid, is of special interest. The system complexity of a such a system increases significantly as the number of possible system states increases. Thus, this paper analyzes the efficiencies and benefits of the different system states within the fuel-optimal operating strategy derived by global optimization. By varying the electrical power distribution between the two axles, the impact on fuel efficiency and the changes within the operating strategy are investigated.
Technical Paper

Friction Calculations and Validation Measures on an External Component Test Bench of the Piston Pin Bearing under the Influence of Greater Elastic Deformation Caused by a Hydrostatic Bearing

2021-09-05
2021-24-0001
Increasing combustion pressure, low viscosity oils, less oil supply and the increasing stress due to downsizing of internal combustion engines (ICE) lead to higher loads within the bearing. As the mechanical and tribological loads on the piston pin bearings have a direct impact on the service life and function of the overall engine system, it is necessary to develop a robust tribological design approach. Regarding the piston pin bearing of a diesel engine, this study aims to describe the effects of different parameters on a DLC-coated piston pin within the bearing. Therefore, an external engine part test rig, which applies various forces to the connecting rod and measures the torque on a driven pin, is used to carry out validation measurements. The special feature of the test bench is the way the piston is beared. For the first experiments, the piston crown is placed against a plate (plate-bearing); later, this plate-bearing is replaced by a hydrostatic bearing.
Technical Paper

Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase - A New Research Approach

2021-04-06
2021-01-0468
As the late combustion phase in SI engines is of high importance for a further reduction of fuel consumption and especially emissions, the impacts of unburnt mass, located in a small volume with a relatively large surface near the wall and in the top land volume, is of high relevance throughout the range of operation. To investigate and quantify the respective interactions, a state of the art Mercedes-Benz single cylinder research SI-engine was equipped with extensive measurement technology. To detect the axial and radial temperature distribution, several surface thermocouples were applied in two layers around the top land volume. As an additional reference, multiple surface thermocouples in the cylinder head complement the highly dynamic temperature measurements in the boundary zones of the combustion chamber.
Journal Article

Investigations on the Spray-Atomization of Various Fuels for an Outwardly Opening Piezo Injector for the Application to a Pilot Injection Passenger Car Gas Engine

2020-09-15
2020-01-2117
Pilot injection gas engines are commonly used as large stationary engines. Often, the combustion is implemented as a dual-fuel strategy, which allows both mixed and diesel-only operation, based on a diesel engine architecture. The current research project focuses on the application of pilot injection in an engine based on gasoline components of the passenger car segment, which are more cost-effective than diesel components. The investigated strategy does not aim for a diesel-only combustion, hence only small liquid quantities are used for the main purpose of providing a strong, reliable ignition source for the natural gas charge. This approach is mainly driven to provide a reliable alternative to the high spark ignition energies required for high cylinder charge densities. When using such small liquid quantities, a standard common-rail diesel nozzle will apparently not be ideal regarding some general specifications.
Technical Paper

Development Stages for Reducing Noise Emissions of the New OM 904 LA Commerical Vehicle Diesel Engine

1997-05-20
972040
In January 1996 Mercedes-Benz has introduced a new 4-cylinder engine OM 904 LA of the new engine family for light commercial vehicles. The power range of the OM 904 LA comprises ratings from 90 kW up to 125 kW at 2300 rpm. From the beginning of the design of this engine, a noise emission output as low as possible was strived for, aside from the high targets as far as durability, maintenace and fuel consumption are concerned. The basis is the development of noise regulations for commercial vehicles. The noise reduction measures have to be concentrated on the engine since up to now it still is one of the main noise emission sources at the vehicle. Already at the lay-out of the engine the prerequisits for a low-noise engine behaviour have been taken into consideration. The engine is equipped with a fuel injection system featuring particular unit injector pumps for each cylinder which is superior to the conventional in-line injection pump as far as acoustics are concerned.
Technical Paper

The Potential of Small DI-Diesel Engines with 250 cm3/Cylinder for Passenger Car Drive Trains

1997-02-24
970838
The demand for fuel-efficient, low-displacement engines for future passenger car applications led to investigations with small DI diesel engines in the advanced engineering department at Mercedes-Benz. Single-cylinder tests were carried out to compare a 2-valve concept with 241 cm3 displacement with a 422 cm3 4-valve design, both operated with a common rail injection system. Mean effective pressures at full load were about 10 % lower with the smaller displacement. With such engines a specific power of 40 kW/I and a specific torque of about 140 Nm/I should be possible. In the current stage of optimization, penalties in fuel economy could be reduced down to values below 3 %. The “4-cylinder DI diesel engine with 1 liter displacement” is an interesting alternative to small 3 cylinder concepts with higher displacement per cylinder. An introduction into series production will not only depend on the potential for further improvement in fuel economy of such small cylinder units.
Technical Paper

Lightweight Crankcase for a New Turbo-Charged Direct Injection Diesel Engine

1997-02-24
971145
The comparison of a light weight crankcase to the production cast iron crankcase of the new Mercedes Benz 2.9-liter direct injection (DI) five-cylinder turbo diesel engine with intercooler is described. The light weight crankcase is cast from the aluminum alloy A 356 while other engine components like oil pan, timing case cover and brackets are manufactured from a magnesium alloy. This paper describes the engine design with the simultaneous calculation, the mechanical development and the acoustic measurements. In this study an engine weight reduction of about 30 kg with comparable noise emission compared to the production engine with cast iron crankcase is realized.
Technical Paper

Commercial Vehicles with Intelligent Rear Axle Steering Systems

1996-10-01
962185
Rear axle steering systems electronically controlled and hydraulically actuated are discussed for commercial vehicles. With these steered axles, the major objective is to improve the manoeuvrability of these vehicles. With the aid of the steering strategy “Rear end Swing-out Compensation” it will be assured, that in two-axle, all-wheel steering trucks dangerous rear end swing-out effects, occuring primarily in low speed ranges, will not take place. In addition, it is possible to enhance the dynamic stability of two-axle trucks while braking on split adhesion road surfaces with the aid of specific control algorithms. Furthermore, the application of a rear axle steering system can suppress dangerous lateral oscillations of centre-axle trailers.
Technical Paper

The New Mercedes-Benz OM 904 LA Light Heavy-Duty Diesel Engine for Class 6 Trucks

1996-02-01
960057
As part of a comprehensive strategic product initiative the most important commercial vehicle manufacturer - Mercedes-Benz AG - is step by step renewing its entire product range. This primarily refers to the heart of the vehicles - the engine. After the OM 457 LA, which was developed together with DDC for the special American market demands and which is produced and sold in the U.S.A. by DDC under the label “Series 55”, has had its premiere in Freightliner's Century Class, the OM 904 LA will now follow in the light commercial vehicle class. This engine has a completely new concept of a direct-injection, highly sophisticated turbocharged four-cylinder in-line engine with air-to-air intercooler, whose main characteristics can be outlined by the terms “multi-valve technology”, high-pressure injection via unit pumps” and “electronic engine control”. This “small” engine has several interesting features, which - up to now - were only known from class 8 engines.
Technical Paper

Influence of the Inlet Port and Combustion Chamber Configuration on the Lean-Burn Behaviour of a Spark-Ignition Gasoline Engine

1996-02-01
960608
The influence of different port designs on the generation of a swirl flow is described on the basis of stationary and non-stationary flow analyses. Subsequently, engine test bench analyses with a 3-valve one-cylinder engine were performed to assess the aforementioned port configurations with respect to their influence on the lean-burn behaviour. The most favourable port design was then used to analyse various combustion chamber shapes in order to further improve the engine behaviour during lean-burn operation and to select the most promising combustion chamber variant. Finally, the port and combustion chamber configurations thus identified were applied in vehicle simulation tests with lean-burn and EGR-burn operation to check the emission behaviour for compliance with the future European level 3 emission limits.
Technical Paper

Extended Oil Drain Intervals: Conservation of Resources or Reduction of Engine Life

1995-02-01
951035
Over the last 40 years it has been possible to lengthen recommended passenger car engine oil drain intervals by up to five times, despite the substantial increases in oil stress through continously rising demands on performance and environmental acceptability. Behind this considerable progress lie improvements in engine design and production technology and the development of suitable advanced engine oil formulations. With increasing oil drain intervals comes a growing uncertainty as to exactly when the oil change should best be made: a fixed mileage applicable to all vehicles is preferred for its practicality but the optimum depends on the driving history of individual vehicles. In Europe a 15000 km oil drain interval is now normal. A further extension based on a fixed interval would give an advantage to a minority of customers but could seriously compromise the durability of engines in the overall vehicle population.
Technical Paper

Reducing Splash and Spray of Trucks and Passenger Cars

1995-02-01
950631
The problem of effectively reducing water spray formed by motor vehicles on wet roads remained up to now unsolved.Although numerous experimental investigations have been published, and comprehensive patent literature is available, the suggested solutions appear to be problematic under real-life conditions. In this paper, a configuration applicable both to commercial vehicles and passenger cars is proposed, which is restricted exclusively to the wings, and - with today's design principles - does not require any special advance preparation. A grooved channel profile in the wing causes the water spray to be reduced considerably without affecting the vehicle's suitability for everday use. An optoelectronic measuring instrument which is carried along the vehicle, makes it possible to conduct integral water spray measurements over time periods of various length.
Technical Paper

Potential of Additional Mechanical Supercharging for Commercial Vehicle Engines

1994-11-01
942268
Modern commercial vehicle engines are equipped with turbocharging and intercooling. This results in low emissions and fuel consumption. In the lower speed and load range and under transient conditions, these engines have disadvantages, as the fuel injection rate has to be limited to avoid excessive smoke emission. Also, the engine braking performance of highly charged, small displacement engines is also lower than that of large displacement engines. Mercedes-Benz decided to develop a combination of turbocharger and mechanical supercharger. In the lower speed range higher torque levels are possible and maximum torque is available without any lag especially in the transient mode with low smoke emission and fuel consumption. Vehicle performance during acceleration can be improved by up to 30%. During engine braking operation, the mechanical supercharger is activated throughout the whole engine speed range which results in a distinctive increase in braking power.
Technical Paper

Results and Economical Aspects of Simulation Systems Evaluating the Braking and Steering Performance of Commercial Vehicles

1994-11-01
942300
The simulation of the driving performance of motor vehicles offers the possibility of analyzing the behavior of new commercial vehicles or new systems to be integrated into the vehicle, already before the stage of the first prototypes. Thus, simulation technology may contribute to shorten the time and costs needed for the development of new vehicles and new vehicle systems. As an example, this contribution describes the simulation of a commercial vehicle with adaptive suspension elements. The simulations were used to coarse-tune the suspension elements before installation and fine-tuning them in a prototype vehicle, and to define and optimize the control strategies of electronically controlled suspension systems. A comparison between the costs of the simulation and estimated costs of corresponding field tests substantiates the economical benefits of the simulation.
Technical Paper

Development of a Single Run Method for the Determination of Individual Hydrocarbons (C2-C12) in Automotive Exhaust by Capillary Gas Chromatography

1994-03-01
940827
The California Air Resources Board (CARB) has proposed procedures for the analysis of non-methane organic gases (NMOG) to determine the ozone forming potential (OFP) of automotive exhaust. For realization of these methods two differently configured GC systems are necessary. In order to reduce the efforts concerning costs, maintenance and quality control of two analytical instruments, a single run method is developed for routine analysis. This method allows identification and quantification of individual hydrocarbons (IHC) in the range of carbon numbers C2 to C12. Analytical problems arising from high contents of water and carbon dioxide in exhaust samples are discussed. Water reduction is obtained by a Nafion® Dryer by means of membrane diffusion of polar compounds. Contamination as well as memory effects due to this sample work up are described. Sample pre-concentration of 50-200 mL diluted automotive exhaust is performed using a triple phase “mixed bed” adsorption tube at O°C.
Technical Paper

Driving Performance of a Commercial Vehicle With Adaptive Suspensions

1993-11-01
931970
The settings of adaptive suspension elements may be switched from a comfortable “soft” characteristic to a safe and “firm” characteristic. Thus the possibility is given to not only improve the ride comfort, but the dynamic driving behavior as well, since no compromise must be made between these two criteria when tuning the suspensions. Such systems seem to be very promising for commercial vehicles, as - because of their changing loading conditions - it is very difficult to design an optimal suspension system using conventional springs and dampers. This paper describes the influence of shock absorbers and air springs with variable characteristics on the ride comfort and the dynamic behavior of a 15-t-truck by investigations done with a simulation system. A series production vehicle without adaptive suspension elements serves as basis. At first the results of measurements and simulations are compared and show a very good concurrence.
Technical Paper

Analysis of Intelligent Suspension Systems for Commercial Vehicles

1993-11-01
933008
Economical and technical aspects justify intelligent suspension systems in commercial vehicles. The tasks of suspensions of vehicles are contradictionary and the prevailing problems cannot be readily solved with conventional suspension systems in a satisfying manner. However, advantages are acquired by the use of adaptive suspension systems. Varying the properties and characteristics of suspension systems in respect to the different loads transported by a commercial vehicle, to vehicle speeds and to dynamic maneuvers, nearly present as good results as closed loop controlled adaptive suspension systems do. For economical reasons fully active suspension systems are only installed in commercial vehicles performing special tasks and services. Partially active suspension systems reduce power consumption and demonstrate satisfactory efficiency.
Technical Paper

An Overview of Electronic Intelligence in Future Commercial Vehicle Generations

1993-11-01
933004
The consequent means towards improved enhancement of the safety of commercial vehicles will in future times require more and more electronic intelligence, in case a distinct optimization of the systems will not be possible with conventional means. In forefront, endeavours are aimed at the improvements of the functions of the system in regard to driving safety, as well as driver stress relief at lowest possible costs, in order to increase the total cost effectiveness of commercial vehicles. Starting with currently implemented electronic systems up to systems now under development, a continuous development of standalone electronics up to integrated electronic compounding is the current trend. This trend shows advantages of reduced wiring and the number of sensors while it increases the function at the same time.
X