Refine Your Search

Topic

Search Results

Technical Paper

End-to-End Synthetic LiDAR Point Cloud Data Generation and Deep Learning Validation

2022-03-29
2022-01-0164
LiDAR sensors are common in automated driving due to their high accuracy. However, LiDAR processing algorithm development suffers from lack of diverse training data, partly due to sensors’ high cost and rapid development cycles. Public datasets (e.g. KITTI) offer poor coverage of edge cases, whereas these samples are essential for safer self-driving. We address the unmet need for abundant, high-quality LiDAR data with the development of a synthetic LiDAR point cloud generation tool and validate this tool’s performance using the KITTI-trained PIXOR object detection model. The tool uses a single camera raycasting process and filtering techniques to generate segmented and annotated class specific datasets.
Technical Paper

Experimental Investigation on the Effects of Design and Control Factors on the Performance and Emissions Characteristics of a Boosted GDI Engine Using Taguchi Method

2021-04-06
2021-01-0466
Mixture formation and combustion dynamics are the primary contributors to the performance and emission characteristics of direct-injected spark ignition (SI) engines. This requires assessing the benefits and tradeoffs of the design and control factors that influence mixing and the subsequent combustion event. In this study, Taguchi's L18 orthogonal array design of experiment (DoE) methodology has been applied to assess contributions and tradeoffs of varied compression ratio, piston bowl design, intake port tumble design, injector spray pattern, injection timing, injection pressure, exhaust gas recirculation (EGR) rate, and intake valve closing timing in a single-cylinder boosted gasoline direct injection (GDI) SI engine. This multiparameter study has been carried out across three speed-load conditions representative of typical automotive application operating ranges.
Technical Paper

Rain-Adaptive Intensity-Driven Object Detection for Autonomous Vehicles

2020-04-14
2020-01-0091
Deep learning based approaches for object detection are heavily dependent on the nature of data used for training, especially for vehicles driving in cluttered urban environments. Consequently, the performance of Convolutional Neural Network (CNN) architectures designed and trained using data captured under clear weather and favorable conditions, could degrade rather significantly when tested under cloudy and rainy conditions. This naturally becomes a major safety issue for emerging autonomous vehicle platforms relying on CNN based object detection methods. Furthermore, despite a noticeable progress in the development of advanced visual deraining algorithms, they still have inherent limitations for improving the performance of state-of-the-art object detection. In this paper, we address this problem area by make the following contributions.
Technical Paper

Engine Calibration Using Global Optimization Methods with Customization

2020-04-14
2020-01-0270
The automotive industry is subject to stringent regulations in emissions and growing customer demands for better fuel consumption and vehicle performance. Engine calibration, a process that optimizes engine performance by tuning engine controls (actuators), becomes challenging nowadays due to significant increase of complexity of modern engines. The traditional sweep-based engine calibration method is no longer sustainable. To tackle the challenge, this work considers two powerful global optimization methods: genetic algorithm (GA) and Bayesian optimization for steady-state engine calibration for single speed-load point. GA is a branch of meta-heuristic methods that has shown a great potential on solving difficult problems in automotive engineering. Bayesian optimization is an efficient global optimization method that solves problems with computationally expensive testing such as hyperparameter tuning in deep neural network (DNN), engine testing, etc.
Technical Paper

Visual Sensor Fusion and Data Sharing across Connected Vehicles for Active Safety

2018-04-03
2018-01-0026
The development of connected-vehicle technology, which includes vehicle-vehicle and vehicle-infrastructure communications, opens the door for unprecedented active safety and driver-enhanced systems. In addition to exchanging basic traffic messages among vehicles for safety applications, a significantly higher level of safety can be achieved when vehicles and designated infrastructure-locations share their sensor data. In this paper, we propose a new system where cameras installed on multiple vehicles and infrastructure-locations share and fuse their visual data and detected objects in real-time. The transmission of camera data and/or detected objects (e.g., pedestrians, vehicles, cyclists, etc.) can be accomplished by many communication methods. In particular, such communications can be accomplished using the emerging Dedicated Short-Range Communications (DSRC) technology.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Technical Paper

Numerical Investigation of the Impact of Nozzle Endwall Clearance Distribution on Variable Nozzle Turbine Performance

2017-03-28
2017-01-1034
As the variable nozzle turbine(VNT) becomes an important element in engine fuel economy and engine performance, improvement of turbine efficiency over wide operation range is the main focus of research efforts for both academia and industry in the past decades. It is well known that in a VNT, the nozzle endwall clearance has a big impact on the turbine efficiency, especially at small nozzle open positions. However, the clearance at hub and shroud wall sides may contribute differently to the turbine efficiency penalty. When the total height of nozzle clearance is fixed, varying distribution of nozzle endwall clearance at the hub and shroud sides may possibly generate different patterns of clearance leakage flow at nozzle exit that has different interaction with and impact on the main flow when it enters the inducer.
Technical Paper

Characterization of Crankcase Pressure Variation during the Engine Cycle of an Internal Combustion Engine

2017-03-28
2017-01-1088
High frequency variations in crankcase pressure have been observed in Inline-four cylinder (I4) engines and an understanding of the causes, frequency and magnitude of these variations is helpful in the design and effective operation of various engine systems. This paper shows through a review and explanation of the physics related to engine operation followed by comparison to measured vehicle data, the relationship between crankcase volume throughout the engine cycle and the observed pressure fluctuations. It is demonstrated that for a known or proposed engine design, through knowledge of the key engine design parameters, the frequency and amplitude of the cyclic variation in crankcase pressure can be predicted and thus utilized in the design of other engine systems.
Technical Paper

Camless Variable Valve Actuator with Two Discrete Lifts

2015-04-14
2015-01-0324
Camless Variable Valve Actuation (VVA) technologies have been known for improving fuel economy, reducing emissions, and enhancing engine performance. VVA can be divided into electro-magnetic, electro-hydraulic, and electro-pneumatic actuation. This paper presents an electro-hydraulic VVA design (called GD-VVA-2) that offers continuously variable timing and two discrete lifts (low lift S1 and high lift S2). The lift control is achieved through a lift control sleeve, which is hydraulically switched between two mechanically defined positions to provide accurate lifts. The low lift S1 has a wide design range, anywhere between zero and the high lift S2, i.e., 0 < S1 < S2. If S1 ≥ 0.5*S2, engine valves may operate at the low lift during most of a typical drive cycle. Operation at the low lift reduces energy consumption significantly. The GD-VVA-2 design offers compact package size and reasonable energy consumption.
Journal Article

Progress in Camless Variable Valve Actuation with Two-Spring Pendulum and Electrohydraulic Latching

2013-04-08
2013-01-0590
Camless Variable Valve Actuation (VVA) technologies have been known for improving fuel economy, reducing emissions, and enhancing engine performance. VVA can be divided into electro-magnetic, electro-hydraulic, and electro-pneumatic actuation. A family of camless VVA designs (called LGD-VVA or Gongda-VVA) has been presented in an earlier SAE publication (SAE 2007-01-1295) that consists of a two-spring actuation, a bypass passage, and an electrohydraulic latch-release mechanism. The two-spring pendulum system is used to provide efficient conversion between the moving mass kinetic energy and the spring potential energy for reduced energy consumption and to be more robust to the operational temperature than the conventional electrohydraulic actuation; and the electrohydraulic mechanism is intended for latch-release function, energy compensation and seating velocity control.
Journal Article

Visualization of Propane and Natural Gas Spark Ignition and Turbulent Jet Ignition Combustion

2012-10-23
2012-32-0002
This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas and propane at several air to fuel ratios and speed-load operating points. Propane and natural gas fuels were compared as they are the most promising gaseous alternative fuels for reciprocating powertrains, with both fuels beginning to find wide market penetration on the fleet level across many regions of the world. Additionally, when compared to gasoline, these gaseous fuels are affordable, have high knock resistance and relatively low carbon content and they do not suffer from the complex re-fueling and storage problems associated with hydrogen.
Technical Paper

In-cylinder Combustion Visualization of a Direct-injection Spark-ignition Engine with Different Operating Conditions and Fuels

2012-09-10
2012-01-1644
A direct-injection and spark-ignition single-cylinder engine with optical access to the cylinder was used for the combustion visualization study. Gasoline and ethanol-gasoline blended fuels were used in this investigation. Experiments were conducted to investigate the effects of fuel injection pressure, injection timing and the number of injections on the in-cylinder combustion process. Two types of direct fuel injectors were used; (i) high-pressure production injector with fuel pressures of 5 and 10 MPa, and (ii) low-pressure production-intent injector with fuel pressure of 3 MPa. Experiments were performed at 1500 rpm engine speed with partial load. In-cylinder pressure signals were recorded for the combustion analyses and synchronized with the high-speed combustion imaging recording. Visualization results show that the flame growth is faster with the increment of fuel injection pressure.
Technical Paper

Optical Diagnostic Combustion Comparisons of Pump Diesel with Bio-Derived Diesel Blends in an Optical DI Diesel Engine

2012-04-16
2012-01-0868
Combustion studies were completed using an International VT275-based, optical DI Diesel engine fueled with Diesel fuel, a Canola-derived FAMES biodiesel, as well as with a blend of the Canola-derived biodiesel and a cetane-reducing, oxygenated fuel, Di-Butyl Succinate. Three engine operating conditions were tested to examine the combustion of the fuels across a range of loads and combustion schemes. Pressure data and instantaneous images were recorded using a high-speed visible imaging, infrared imaging, and high-speed OH imaging techniques. The recorded images were post processed to analyze different metrics, such as projected areas of in-cylinder soot, OH, and combustion volumes. A substantially reduced in-cylinder area of soot formation is observed for the Canola-DBS blended fuel with a slight reduction from the pure FAMES biodiesel compared to pump Diesel fuel.
Journal Article

A Turbulent Jet Ignition Pre-Chamber Combustion System for Large Fuel Economy Improvements in a Modern Vehicle Powertrain

2010-05-05
2010-01-1457
Turbulent Jet Ignition is an advanced pre-chamber initiated combustion system for an otherwise standard spark ignition engine found in current on-road vehicles. This next-generation pre-chamber design overcomes previous packaging obstacles by simply replacing the spark plug in a modern four-valve, pent roof spark ignition engine. Turbulent Jet Ignition enables very fast burn rates due to the ignition system producing multiple, distributed ignition sites, which consume the main charge rapidly and with minimal combustion variability. The fast burn rates allow for increased levels of dilution (lean burn and/or EGR) when compared to conventional spark ignition combustion, with dilution levels being comparable to other low temperature combustion technologies (homogeneous charge compression ignition - HCCI) without the complex control drawbacks.
Journal Article

Air-to-Fuel and Dual-Fuel Ratio Control of an Internal Combustion Engine

2009-11-02
2009-01-2749
Air-to-fuel (A/F) ratio is the mass ratio of the air-to-fuel mixture trapped inside a cylinder before combustion begins, and it affects engine emissions, fuel economy, and other performances. Using an A/F ratio and dual-fuel ratio control oriented engine model, a multi-input-multi-output (MIMO) sliding mode control scheme is used to simultaneously control the mass flow rate of both port fuel injection (PFI) and direct injection (DI) systems. The control target is to regulate the A/F ratio at a desired level (e.g., at stoichiometric) and fuel ratio (ratio of PFI fueling vs. total fueling) to any desired level between zero and one. A MIMO sliding mode controller was designed with guaranteed stability to drive the system A/F and fuel ratios to the desired target under various air flow disturbances.
Technical Paper

Knock Detection for a Large Displacement Air-Cooled V-Twin Motorcycle Engine Using In-Cylinder Ionization Signals

2008-09-09
2008-32-0028
To obtain the maximum output power and fuel economy from an internal combustion engine, it is often necessary to detect engine knock and operate the engine at its knock limit. This paper presents the ability to detect knock using in-cylinder ionization signals on a large displacement, air-cooled, “V” twin motorcycle engine over the engine operational map. The knock detection ability of three different sensors is compared: production knock (accelerometer) sensor, in-cylinder pressure sensor, and ionization sensor. The test data shows that the ionization sensor is able to detect knock better than the production knock sensor when there is high mechanical noise present in the engine.
Technical Paper

Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems

2008-06-23
2008-01-1767
The requirement of reduced emissions and improved fuel economy led the introduction of direct-injection (DI) spark-ignited (SI) engines. Dual-fuel injection system (direct-injection and port-fuel-injection (PFI)) was also used to improve engine performance at high load and speed. Ethanol is one of the several alternative transportation fuels considered for replacing fossil fuels such as gasoline and diesel. Ethanol offers high octane quality but with lower energy density than fossil fuels. This paper presents the combustion characteristics of a single cylinder dual-fuel injection SI engine with the following fueling cases: a) gasoline for PFI and DI, b) PFI gasoline and DI ethanol, and c) PFI ethanol and DI gasoline. For this study, the DI fueling portion varied from 0 to 100 percentage of the total fueling over different engine operational conditions while the engine air-to-fuel ratio remained at a constant level.
Technical Paper

Model Reference Adaptive Control of a Pneumatic Valve Actuator for Infinitely Variable Valve Timing and Lift

2007-04-16
2007-01-1297
Electro-pneumatic valve actuators are used to eliminate the cam shaft of a traditional internal combustion engine. They are used to control the opening timing, duration, and lift of both intake and exhaust valves. A physics based nonlinear mathematical model called the level one model was built using Newton's law, mass conservation and thermodynamic principles. A control oriented model, the level two model, was created by partially linearizing the level one model for model reference parameter identification. This model reduces computational throughput and enables real-time implementation. A model reference adaptive control system was used to identify the nonlinear parameters that were needed for generating a feedforward control signal. The closed-loop valve lift tracking, valve opening and closing timing control strategies were proposed.
Technical Paper

Modeling Worm Propagation over Vehicular Ad Hoc Networks*

2006-04-03
2006-01-1581
Internet worms have shown the capability to compromise millions of network hosts in a matter of seconds, thereby precluding human countermeasures. A worm over a vehicular ad hoc network (VANET) can, in addition to the well-known threats, pose a whole new class of traffic-related threats (ranging from congestion to large-scale accidents). To combat these automated adversaries, security patches can be distributed by good worms. An accurate VANET-based worm propagation model is essential to protect from malicious worms and to efficiently utilize good worms for distribution of security patches. This paper derives an approximate closed-form mathematical model of worm propagation over VANETs. Simulation results assert that the proposed model captures the VANET worm propagation dynamics with outstanding accuracy.
Technical Paper

Parameterization and FEA Approach for the Assessment of Piston Characteristics

2006-04-03
2006-01-0429
Elastohydrodynamic lubrication, piston dynamics and friction are important characteristics determining the performance and efficiency of an internal combustion engine. This paper presents a finite element analysis on a production piston of a gasoline engine performed using commercial software, the COSMOSDesignStar, and a comprehensive cylinder-kit simulation software, the CASE, to demonstrate the advantages of using a reduced, parameterized model analysis in the assessment of piston design characteristics. The full piston model is parameterized according to the CASE specifications. The two are analyzed and compared in the COSMOSDesignStar, considering thermal and mechanical loads. The region of interest is the skirt area on the thrust and anti-thrust sides of the piston.
X