Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Innovative Exergy-Based Combustion Phasing Control of IC Engines

2016-04-05
2016-01-0815
Exergy or availability is the potential of a system to do work. In this paper, an innovative exergy-based control approach is presented for Internal Combustion Engines (ICEs). An exergy model is developed for a Homogeneous Charge Compression Ignition (HCCI) engine. The exergy model is based on quantification of the Second Law of Thermodynamic (SLT) and irreversibilities which are not identified in commonly used First Law of Thermodynamics (FLT) analysis. An experimental data set for 175 different ICE operating conditions is used to construct the SLT efficiency maps. Depending on the application, two different SLT efficiency maps are generated including the applications in which work is the desired output, and the applications where Combined Power and Exhaust Exergy (CPEX) is the desired output. The sources of irreversibility and exergy loss are identified for a single cylinder Ricardo HCCI engine.
Technical Paper

Methods for Modeling and Code Generation for Custom Lookup Tables

2010-04-12
2010-01-0941
Lookup tables and functions are widely used in real-time embedded automotive applications to conserve scarce processor resources. To minimize the resource utilization, these lookup tables (LUTs) commonly use custom data structures. The lookup function code is optimized to process these custom data structures. The legacy routines for these lookup functions are very efficient and have been in production for many years. These lookup functions and the corresponding data structures are typically used for calibration tables. The third-party calibration tools are specifically tailored to support these custom data structures. These tools assist the calibrators in optimizing the control algorithm performance for the targeted environment for production. Application software typically contains a mix of both automatically generated software and manually developed code. Some of the same calibration tables may be used in both auto generated and hand-code [ 1 ] [ 2 ].
Technical Paper

Design and Analysis of an Adaptive Real-Time Advisory System for Improving Real World Fuel Economy in a Hybrid Electric Vehicle

2010-04-12
2010-01-0835
Environmental awareness and fuel economy legislation has resulted in greater emphasis on developing more fuel efficient vehicles. As such, achieving fuel economy improvements has become a top priority in the automotive field. Companies are constantly investigating and developing new advanced technologies, such as hybrid electric vehicles, plug-in hybrid electric vehicles, improved turbo-charged gasoline direct injection engines, new efficient powershift transmissions, and lighter weight vehicles. In addition, significant research and development is being performed on energy management control systems that can improve fuel economy of vehicles. Another area of research for improving fuel economy and environmental awareness is based on improving the customer's driving behavior and style without significantly impacting the driver's expectations and requirements.
Technical Paper

National Science Foundation Workshop on Environmentally Benign Manufacturing for the Transportation Industries

2002-03-04
2002-01-0593
The National Science Foundation recently sponsored a Workshop on Environmentally Benign Manufacturing (EBM) for the Transportation Industries. The objective of the workshop was to determine future directions of research in the EBM area and to construct a roadmap for development of future research programs. While research in the fields of Design for the Environment (DfE) and Life Cycle Analysis (LCA) have focused on the product and product life cycles, an additional focus is needed to find and develop processes with less environmental impact within the manufacturing environment. This workshop explored EBM issues with respect to the enterprise, the products, the processes and the materials.
Technical Paper

Spatial Non-Uniformities in Diesel Particulate Trap Regeneration

2001-03-05
2001-01-0908
Diesel particulate trap regeneration is a complex process involving the interaction of phenomena at several scales. A hierarchy of models for the relevant physicochemical processes at the different scales of the problem (porous wall, filter channel, entire trap) is employed to obtain a rigorous description of the process in a multidimensional context. The final model structure is validated against experiments, resulting in a powerful tool for the computer-aided study of the regeneration behavior. In the present work we employ this tool to address the effect of various spatial non-uniformities on the regeneration characteristics of diesel particulate traps. Non-uniformities may include radial variations of flow, temperature and particulate concentration at the filter inlet, as well as variations of particulate loading. In addition, we study the influence of the distribution of catalytic activity along the filter wall.
Technical Paper

A Dynamic Computer-Aided Engineering Model for Automobile Climate Control System Simulation and Application Part I: A/C Component Simulations and Integration

1999-03-01
1999-01-1195
This paper details the computer algorithm which was developed to determine the A/C refrigeration circuit balance point under the system transient operating conditions. The A/C circuit model consisting of major component submodels, such as the evaporator, compressor, condenser, orifice, air handling system, and connecting hoses, are included in the study. Pressure drop and thermal capacity for the evaporator, condenser, and connecting ducts/hoses are also considered in the simulation. The results obtained from the simulation model are in good agreement with the experimental data. Users can take advantage of this CAE tool to optimize the A/C system design and to minimize the development process with time-saving and cost-effective perspectives.
Technical Paper

A Dynamic Computer-Aided Engineering Model for Automobile Climate Control System Simulation and Application Part II: Passenger Compartment Simulation and Applications

1999-03-01
1999-01-1196
A Computer-Aided Engineering (CAE) model for automobile climate control system is presented to provide engineers with an cost effective analysis tool for designing, developing, and optimizing the vehicle interior climate. It is the objective of this paper to develop a mathematical model which predicts the lumped temperature and lumped humidity variations inside the passenger compartment under design and operating conditions. The transient nature of the passenger cabin temperature, average interior mass temperature, and humidity are modeled using three coupled non-linear ordinary differential equations based on mass and energy balances. These equations are then solved by a fourth-order Runge-Kutta method with adaptive step size control.
Technical Paper

Compound Electroformed Metal Nozzles for High Pressure Gasoline Injection

1998-02-23
980818
The objective of this research was to evaluate the effects that higher fluid injection pressures and nozzle geometry have on compound fuel injector nozzle performance. Higher pressures are shown to significantly reduce droplet size, increase the discharge coefficient and reduce the overall size of a nozzle spray. It is also shown that the geometry has a significant effect on nozzle performance, and it can be manipulated to give a desired spray shape.
Technical Paper

Dynamic Modeling of Forces on Snowplow Equipped Trucks

1997-11-17
973193
A major task of road and airfield maintenance for transportation departments in the Northern United States and in cold regions globally is snow removal. In addition, there is a service industry built on snowplow equipped light trucks to remove snow from vehicle serviceways and parking lots. Thus, a source of stresses on a truck frame are the forces applied by the plow. Unfortunately, very little research has been performed to provide design models that will predict these forces. In this paper, both theoretical and experimental work on developing expressions for snowplow forces will be discussed.
Technical Paper

Research Advances in Dry and Semi-Dry Machining

1997-02-24
970415
The current trend in the automotive industry is to minimize/eliminate cutting fluid use in most machining operations. Research is required prior to achieving dry or semi-dry machining. Issues such as heat generation and transfer, thermal deformation and fluid lubricity related effects on tool life and surface roughness determine the feasibility of dry machining. This paper discusses recent advances in achieving dry/semi-dry machining. As the first step, research has been conducted to investigate the actual role of fluids (if any) in various machining operations. A predictive heat generation model for orthogonal cutting of visco-plastic material was created. A control volume approach allowed development of a thermal model for convective heat transfer during machining. The heat transfer performance of an air jet in dry machining was explored. The influence of machining process variables and cutting fluid presence on chip morphology was investigated through designed experiments.
Technical Paper

Compound Port Fuel Injector Nozzle Droplet Sizes and Spray Patterns

1996-02-01
960114
The goal of this research was to determine an empirical method of relating the droplet sizes and the spray patterns to the parameters and the geometries of the compound nozzles. Two different types of compound nozzles were studied, the compound silicon micro machined nozzle and the compound metal disk nozzle. Several different orifice geometries of each nozzle type were examined. The injector components upstream of the compound nozzle of two different types of injectors were also studied. A nondimensional characterization of the droplet sizes and the mass flow rates was proposed. The results of this study show that there exists optimum geometric features that will produce sprays with the minimum steady state and dynamic Sauter mean diameter. The spray of a compound nozzle can be characterized by the atomization efficiency and the discharge coefficient. Nozzle testing results show that many flow characteristics are developed in the compound nozzle.
Technical Paper

Mathematical Modeling of Adsorption Processes for the International Space Station Water Processor

1995-07-01
951629
A mathematical model is presented for analysis and optimization of the adsorbents in the multifiltration beds contained in the International Space Station (ISS) water processor. The model consists of a physical properties database, an equilibrium description for single and multicomponent adsorption, and a kinetic description for adsorption beds in the water processor. The model is verified on a surrogate mixture designed to mimic the adsorption potential of the ISS shower/handwash waste stream.
Technical Paper

Ion Exchange Model Development for the International Space Station Water Processor

1995-07-01
951628
A mathematical model is presented for analysis and optimization of the ion exchange beds in the International Space Station (ISS) Water Processor. The model consists of a physical properties database, an equilibrium description for binary and multicomponent ion exchange, and a kinetic description for ion exchange beds in the Water Processor. The ion exchange model will be verified for an Ersatz water designed to mimic the ISS shower/handwash waste stream.
Technical Paper

Strain Path Effects on the Modified FLD Caused by Variable Blank Holder Force

1995-02-01
950695
The objective in this research is to investigate the effects of variable blank holder force (VBHF) on the material formability, due to its effect on the strain path. It is found in a recent study [9] that VBHF does not significantly affect the overall trend of the strain path. This strain path in deep drawing process is linear for the materials in the flange and under punch face, and is roughly bi-linear for the material around the punch nose. The second segment of the strain path in the punch nose region is plane-strain. VBHF, however, affects the strain ratio ρ1 = ε2/ε1 of the first segment of the bi-linear strain path. These effects, especially ρ1, on limit strain were studied using M-K method. A strain path dependent modified forming limit diagram (MFLD) was calculated based on the actual strain path. It is found that the MFLD is strongly dependent on ρ1.
Technical Paper

A Review of Diesel Particulate Control Technology and Emissions Effects - 1992 Horning Memorial Award Lecture

1994-03-01
940233
Studies have been conducted at Michigan Technological University (MTU) for over twenty years on methods for characterizing and controlling particulate emissions from heavy-duty diesel engines and the resulting effects on regulated and unregulated emissions. During that time, control technologies have developed in response to more stringent EPA standards for diesel emissions. This paper is a review of: 1) modern emission control technologies, 2) emissions sampling and chemical, physical and biological characterization methods and 3) summary results from recent studies conducted at MTU on heavy-duty diesel engines with a trap and an oxidation catalytic converter (OCC) operated on three different fuels. Control technology developments discussed are particulate traps, catalysts, advances in engine design, the application of exhaust gas recirculation (EGR), and modifications of fuel formulations.
Technical Paper

Design for the Super Mileage Competition

1981-09-01
810918
Twenty vehicles from eighteen schools competed in the Second SAE Super Mileage Competition at the Eaton Proving Grounds, Marshall, Michigan, on June 6, 1981. Of these, fifteen completed all of the events with the winner obtaining 702 miles/gallon (298.4 KM/liter). The designs of the successful vehicles were quite varied but stressed lightness, aerodynamic streamlining, low rolling resistance and efficient drive trains. Some engines were also modified- to improve efficiency. The integrated optimization of all variables within the severe constraints of budget, manpower, time and manufacturing facilities presented an excellent engineering experience for the students.
X