Refine Your Search

Topic

Author

Search Results

Journal Article

Reducing Fuel Consumption on a Heavy-Duty Nonroad Vehicle: Conventional Powertrain Modifications

2023-04-11
2023-01-0466
This investigation focuses on conventional powertrain technologies that provide operational synergy based on customer utilization to reduce fuel consumption for a heavy-duty, nonroad (off-road) material handler. The vehicle of interest is a Pettibone Cary-Lift 204i, with a base weight of 50,000 lbs. and a lift capacity of 20,000 lbs. The conventional powertrain consists of a US Tier 4 Final diesel engine, a non-lockup torque converter, a four-speed powershift automatic transmission, and all-wheel drive. The paper will present a base vehicle energy/fuel consumption breakdown of propulsion, hydraulic and idle distribution based on a representative end-user drive cycle. The baseline vehicle test data was then used to develop a correlated lumped parameter model of the vehicle-powertrain-hydraulic system that can be used to explore technology integration that can reduce fuel consumption.
Technical Paper

Analysis of Scavenged Pre-Chamber for Light Duty Truck Gas Engine

2017-09-04
2017-24-0095
An ongoing research and development activities on the scavenged pre-chamber ignition system for an automotive natural gas fueled engine is presented in this paper. The experimental works have been performed in engine laboratory at steady state conditions on a gas engine with 102 mm bore and 120 mm stroke, converted to a single cylinder engine. The in-house designed scavenged pre-chamber is equipped with a spark plug, fuel supply and a miniature pressure sensor for detailed combustion diagnostics. The engine was operated at constant speed, fully open throttle valve and four different fueling modes with or without spark discharge. A partly motored mode allowed direct evaluation of the pre-chamber heat release. The experimental data acquired in this research served as a validation data for the numerical simulations. The performed tests of prototypes and calculations have recently been expanded to include 3-D flow calculations in the Ansys Fluent software.
Book

Clean Snowmobile Challenge - 1: The Early Years, 4-Stroke Engines Make Their Debut

2016-12-22
This collection is a resource for studying the history of the evolving technologies that have contributed to snowmobiles becoming cleaner and quieter machines. Papers address design for a snowmobile using E10 gasoline (10% ethanol mixed with pump gasoline). Performance technologies that are presented include: • Engine Design: application of the four-stroke engine • Applications to address both engine and track noise • Exhaust After-treatment to reduce emissions The SAE International Clean Snowmobile Challenge (CSC) program is an engineering design competition. The program provides undergraduate and graduate students the opportunity to enhance their engineering design and project management skills by reengineering a snowmobile to reduce emissions and noise. The competition includes internal combustion engine categories that address both gasoline and diesel, as well as the zero emissions category in which range and draw bar performance are measured.
Journal Article

Characteristics of Formaldehyde (CH2O) Formation in Dimethyl Ether (DME) Spray Combustion Using PLIF Imaging

2016-04-05
2016-01-0864
Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
Technical Paper

Fuel-Optimal Strategies for Vehicle Supported Military Microgrids

2016-04-05
2016-01-0312
Vehicles with power exporting capability are microgrids since they possess electrical power generation, onboard loads, energy storage, and the ability to interconnect. The unique load and silent watch requirements of some military vehicles make them particularly well-suited to augment stationary power grids to increase power resiliency and capability. Connecting multiple vehicles in a peer-to-peer arrangement or to a stationary grid requires scalable power management strategies to accommodate the possibly large numbers of assets. This paper describes a military ground vehicle power management scheme for vehicle-to-grid applications. The particular focus is overall fuel consumption reduction of the mixed asset inventory of military vehicles with diesel generators typically used in small unit outposts.
Technical Paper

Predictive Control of a Power-Split HEV with Fuel Consumption and SOC Estimation

2015-04-14
2015-01-1161
This paper studies model predictive control algorithm for Hybrid Electric Vehicle (HEV) energy management to improve HEV fuel economy. In this paper, Model Predictive Control (MPC), a predictive control method, is applied to improve the fuel economy of power-split HEV. A dedicated model predictive control method is developed to predict vehicle speed, battery state of charge (SOC), and engine fuel consumption. The power output from the engine, motor, and the mechanical brake will be adjusted to match driver's power request at the end of the prediction window while minimizing fuel consumption. The controller model is built on Matlab® MPC toolbox® and the simulations are based on MY04 Prius vehicle model using Autonomie®, a powertrain and fuel economy analysis software, developed by Argonne National Laboratory. The study compares the performance of MPC and conventional rule-base control methods.
Technical Paper

Impact of Ester Structures on the Soot Characteristics and Soot Oxidative Reactivity of Biodiesel

2015-04-14
2015-01-1080
A study and analysis of the relation of biodiesel chemical structures to the resulting soot characteristics and soot oxidative reactivity is presented. Soot samples generated from combustion of various methyl esters, alkanes, biodiesel and diesel fuels in laminar co-flow diffusion flames are analyzed to evaluate the impact of fuel-bound oxygen in fatty acid esters on soot oxidation behavior. Thermogravimetric analysis (TGA) of soot samples collected from diffusion flames show that chemical variations in biodiesel ester compounds have an impact on soot oxidative reactivity and soot characteristics in contrast to findings reported previously in the literature. Soot derived from methyl esters with shorter alkyl chains, such as methyl butyrate and methyl hexanoate, exhibit higher reactivity than those with longer carbon chain lengths, such as methyl oleate, which are more representative of biodiesel fuels.
Technical Paper

Development of Chemical Kinetic Mechanism for Dimethyl Ether (DME) with Comprehensive Polycyclic Aromatic Hydrocarbon (PAH) and NOx Chemistry

2015-04-14
2015-01-0807
Dimethyl ether (DME) appears to be an attractive alternative to common fossil fuels in compression ignition engines due to its smokeless combustion and fast mixture formation. However, in order to fully understand the complex combustion process of DME, there is still a remaining need to develop a comprehensive chemical kinetic mechanism that includes both soot and NOx chemistry. In this study, a detailed DME mechanism with 305 species is developed from the basic DME mechanism of Curran et al. (2000) with addition of soot and NOx chemistry from Howard's mechanism et al. (1999), and GRI 3.0 mechanism, respectively. Soot chemistry in Howard mechanism consisting hydrogen abstraction acetylene addition (HACA) and growth of small polycyclic aromatic hydrocarbons (PAH), assesses over a wide range of temperature and is able to predict good to fair the formation of PAH up to coronene.
Technical Paper

System Optimization for a 2-Stroke Diesel Engine with a Turbo Super Configuration Supporting Fuel Economy Improvement of Next Generation Engines

2014-11-11
2014-32-0011
The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831. Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on a 2 cylinder 2-stroke 0.73L diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT).
Technical Paper

Performance and Efficiency Assessment of a Production CNG Vehicle Compared to Its Gasoline Counterpart

2014-10-13
2014-01-2694
Two modern light-duty passenger vehicles were selected for chassis dynamometer testing to evaluate differences in performance end efficiency resulting from CNG and gasoline combustion in a vehicle-based context. The vehicles were chosen to be as similar as possible apart from fuel type, sharing similar test weights and identical driveline configurations. Both vehicles were tested over several chassis dynamometer driving cycles, where it was found that the CNG vehicle exhibited 3-9% lower fuel economy than the gasoline-fueled subject. Performance tests were also conducted, where the CNG vehicle's lower tractive effort capability and longer acceleration times were consistent with the lower rated torque and power of its engine as compared to the gasoline model. The vehicles were also tested using quasi-steady-state chassis dynamometer techniques, wherein a series of engine operating points were studied.
Technical Paper

Measurement of Exhaust Emissions of Small Gasoline Engines Under Real-World Driving Conditions

2014-10-13
2014-01-2811
The paper focuses on portable “on-board” instrumentation and methods for evaluation of exhaust emissions from scooters and various small machinery under real-world driving conditions. Two approaches are investigated here. In one, a miniature on-board system mounted on the equipment itself performs online measurements of the concentrations of the pollutants of interest (HC, CO, CO2, NOx, some property of particulate matter), and measurement or computation of the intake air flow. This approach has been used on a 50 cm3 scooter fitted with a 14-kg on-board system and driven on local routes. Measured concentrations of gaseous compounds, particle mass and total particle length were multiplied with the corresponding intake air flow computed from measured engine rpm, intake air manifold pressure and temperature. In the second approach, a full-flow dilution tunnel, gas analyzers and particle measurement or sampling devices are mounted on an accompanying hand cart or vehicle.
Journal Article

A Comparison of Cold-Start Behavior and its Impact on Fuel Economy for Advanced Technology Vehicles

2014-04-01
2014-01-1375
Vehicle operation during cold-start powertrain conditions can have a significant impact on drivability, fuel economy and tailpipe emissions in modern passenger vehicles. As efforts continue to maximize fuel economy in passenger vehicles, considerable engineering resources are being spent in order to reduce the consumption penalties incurred shortly after engine start and during powertrain warmup while maintaining suitably low levels of tailpipe emissions. Engine downsizing, advanced transmissions and hybrid-electric architecture can each have an appreciable effect on cold-start strategy and its impact on fuel economy. This work seeks to explore the cold-start strategy of several passenger vehicles with different powertrain architectures and to understand the resulting fuel economy impact relative to warm powertrain operation. To this end, four vehicles were chosen with different powertrain architectures.
Technical Paper

Stochastic Knock Detection, Control, Software Integration, and Evaluation on a V6 Spark-Ignition Engine under Steady-State Operation

2014-04-01
2014-01-1358
The ability to operate a spark-ignition (SI) engine near the knock limit provides a net reduction of engine fuel consumption. This work presents a real-time knock control system based on stochastic knock detection (SKD) algorithm. The real-time stochastic knock control (SKC) system is developed in MATLAB Simulink, and the SKC software is integrated with the production engine control strategy through ATI's No-Hooks. The SKC system collects the stochastic knock information and estimates the knock level based on the distribution of knock intensities fitting to a log-normal (LN) distribution. A desired knock level reference table is created under various engine speeds and loads, which allows the SKC to adapt to changing engine operating conditions. In SKC system, knock factor (KF) is an indicator of the knock intensity level. The KF is estimated by a weighted discrete FIR filter in real-time.
Technical Paper

Impact of Blending Gasoline with Isobutanol Compared to Ethanol on Efficiency, Performance and Emissions of a Recreational Marine 4-Stroke Engine

2014-04-01
2014-01-1230
This study evaluates iso-butanol as a pathway to introduce higher levels of alternative fuels for recreational marine engine applications compared to ethanol. Butanol, a 4-carbon alcohol, has an energy density closer to gasoline than ethanol. Isobutanol at 16 vol% blend level in gasoline (iB16) exhibits energy content as well as oxygen content identical to E10. Tests with these two blends, as well as indolene as a reference fuel, were conducted on a Mercury 90 HP, 4-stroke outboard engine featuring computer controlled sequential multi-port Electronic Fuel Injection (EFI). The test matrix included full load curves as well as the 5-mode steady-state marine engine test cycle. Analysis of the full load tests suggests that equal full load performance is achieved across the engine speed band regardless of fuel at a 15-20°C increase in exhaust gas temperatures for the alcohol blends compared to indolene.
Technical Paper

Development of Steel Clad Aluminum Brake

2013-09-30
2013-01-2054
Aluminum based brake rotors have been a priority research topic in the DOE 1999 Aluminum Industry Roadmap for the Automobile Market. After fourteen years, no satisfactory technology has been developed to solve the problem of aluminum's low working temperatures except the steel clad aluminum (SCA) brake technology. This technology research started at Michigan Technological University (MTU) in 2001 and has matured recently for commercial productions. The SCA brake rotor has a solid body and replaces the traditional convective cooling of a vented rotor with conductive cooling to a connected aluminum wheel. Much lower temperatures result with the aluminum wheel acting as a great heat sink/radiator. The steel cladding further increases the capability of the SCA rotor to withstand higher surface temperatures. During the road tests of SCA rotors on three cars, significant gas mileage improvement was found; primarily attributed to the unique capability of the SCA rotor on pad drag reduction.
Technical Paper

A Computational Study on the Impact of Cycle-to-Cycle Combustion Fluctuations on Fuel Consumption and Knock in Steady-State and Drivecycle Operation

2013-09-08
2013-24-0030
In spark-ignition engines, fluctuations of the in-cylinder pressure trace and the apparent rate of heat release are usually observed from one cycle to another. These Cycle-to-Cycle Variations (CCV) are affected by the early flame development and the subsequent flame front propagation. The CCV are responsible for engine performance (e.g. fuel consumption) and the knock behavior. The occurrence of the phenomena is unpredictable and the stochastic nature offers challenges in the optimization of engine control strategies. In the present work, CCV are analyzed in terms of their impact on the engine knock behavior and the related efficiency. Target is to estimate the possible fuel consumption savings in steady-state operation and in the drivecycle, when CCV are reduced. Since CCV are immanent on real engines, such a study can only be done by means of simulation.
Technical Paper

Assessment of Low Levels of Particulate Matter Exhaust Emissions Using Low-Cost Ionization-Type Smoke Detectors

2013-09-08
2013-24-0168
Traditional smoke opacity measurement, performed on diesel engines during regular emissions inspections, sensitive primarily to larger particles of elemental carbon, is very little sensitive to nanoparticles and to semi-volatile “organic carbon” particles. For this reason, it no longer suffices as a high emitter detection tool for modern vehicles with a particle filter or for advanced low-emissions technology where semi-volatile organic particles are the dominant fraction of particulate matter. This paper investigates the potential of common low-cost ionization type smoke detectors, produced in mass quantities for fire detection in buildings, as a tool to measure particle emissions in vehicular exhaust. Two ionization chambers were used to measure both raw and diluted exhaust of various engines powered by diesel fuel and biofuels under laboratory conditions as well as on the road.
Technical Paper

Two-Input Two-Output Control of Blended Fuel HCCI Engines

2013-04-08
2013-01-1663
Precise cycle-to-cycle control of combustion is the major challenge to reduce fuel consumption in Homogenous Charge Compression Ignition (HCCI) engines, while maintaining low emission levels. This paper outlines a framework for simultaneous control of HCCI combustion phasing and Indicated Mean Effective Pressure (IMEP) on a cycle-to-cycle basis. A dynamic control model is extended to predict behavior of HCCI engine by capturing main physical processes through an HCCI engine cycle. Performance of the model is validated by comparison with the experimental data from a single cylinder Ricardo engine. For 60 different steady state and transient HCCI conditions, the model predicts the combustion phasing and IMEP with average errors less than 1.4 CAD and 0.2 bar respectively. A two-input two-output controller is designed to control combustion phasing and IMEP by adjusting fuel equivalence ratio and blending ratio of two Primary Reference Fuels (PRFs).
Technical Paper

Modeling of Lithium-Ion Battery Management System and Regeneration Control Strategy for Hybrid Electric Vehicles

2013-04-08
2013-01-0939
Battery management system (BMS) plays a key role in the power management of hybrid electric vehicles (HEV). It measures the state of charge (SOC), state of health (SOH) of the battery, protects the battery package and extends cells' life cycles. For HEV applications, lithium-ion battery is usually selected as electric power source due to its high specific energy, high energy density, and long life cycle. However, the non-linear characteristic of a Li-ion battery, complicated electro-chemical model, and environmental factors, raises the difficulties in the real-time estimation of the SOC for a Li-ion battery. To address this challenge, a BMS for HEVs is modeled with MATLAB/Simulink. In addition, a regenerative braking control strategy is proposed to determine the magnitude of the regenerative torque based on the battery SOC.
Technical Paper

Influence of Natural Gas Composition on Turbocharged Stoichiometric SI Engine Performance

2012-09-10
2012-01-1647
In certain applications, the use of natural gas can be beneficial when compared to conventional road transportation fuels. Benefits include fuel diversification and CO₂ reduction, allowing future emissions regulations to be met. The use of natural gas in vehicles will also help to prepare the fuel and service infrastructure for future transition to gaseous renewable fuels. The composition of natural gas varies depending on its source, and engine manufacturers must be able to account for these differences. In order to achieve highly fuel flexible engines, the influence of fuel composition on engine properties must first be assessed. This demand is especially important for engines with high power densities. This paper summarizes knowledge acquired from engine dynamometer tests for different compositions of natural gas. Various levels of hydrocarbons and hydrogen in a mixture with methane have been tested at full load and various engine speeds.
X