Refine Your Search

Topic

Author

Search Results

Technical Paper

Measurement of Hydrogen Direct Injection Jet Equivalence Ratio under Elevated Ambient Pressure Condition

2023-04-11
2023-01-0332
Owing to climate change issues caused by global warming, the role of alternative fuels, such as low-carbon and non-carbon fuels, is becoming increasingly important, particularly in the transportation sector. Therefore, hydrogen has emerged as a promising fuel for internal combustion engines because it does not emit carbon dioxide. Direct injection is mandatory for hydrogen-based internal combustion engines to mitigate backfires and low energy density. However, there is a lack of measurement of the equivalence ratio methodology because hydrogen has a higher diffusion rate than conventional fuels. The objective of this research is a feasibility study of laser-induced breakdown spectroscopy (LIBs) for measuring the equivalence ratio. The second harmonic ND-YAG laser was implemented to induce the atomic emission of hydrogen via the breakdown phenomenon. Simultaneously, the hydrogen jet structure was visualized in a constant volume vessel using Schlieren imaging.
Journal Article

Reducing Fuel Consumption on a Heavy-Duty Nonroad Vehicle: Conventional Powertrain Modifications

2023-04-11
2023-01-0466
This investigation focuses on conventional powertrain technologies that provide operational synergy based on customer utilization to reduce fuel consumption for a heavy-duty, nonroad (off-road) material handler. The vehicle of interest is a Pettibone Cary-Lift 204i, with a base weight of 50,000 lbs. and a lift capacity of 20,000 lbs. The conventional powertrain consists of a US Tier 4 Final diesel engine, a non-lockup torque converter, a four-speed powershift automatic transmission, and all-wheel drive. The paper will present a base vehicle energy/fuel consumption breakdown of propulsion, hydraulic and idle distribution based on a representative end-user drive cycle. The baseline vehicle test data was then used to develop a correlated lumped parameter model of the vehicle-powertrain-hydraulic system that can be used to explore technology integration that can reduce fuel consumption.
Technical Paper

Integration of an ORC Waste Heat Recovery with Electrification and Supercharging through Use of a Planetary Gear System for a Class 8 Tractor Application

2019-04-02
2019-01-0229
A novel approach to the Integration of Turbocompounding/WHR, Electrification and Supercharging technologies (ITES) to reduce fuel consumption in a medium heavy-duty diesel engine was previously published by FEV. This paper describes a modified approach to ITES to reduce fuel consumption on a heavy-duty diesel engine applied in a Class 8 tractor. The original implementation of the ITES incorporated a turbocompound turbine as the means for waste heat recovery. In this new approach, the turbocompound unit connected to the sun gear of the planetary gear set has been replaced by an organic Rankine cycle (ORC) turbine expander. The secondary compressor and the electric motor-generator are connected to the ring gear and the carrier gear respectively. The ITES unit is equipped with dry clutch and band brake allowing flexibility in mechanical and electrical integration of the ORC expander, secondary compressor and electric motor-generator to the engine.
Book

Clean Snowmobile Challenge - 1: The Early Years, 4-Stroke Engines Make Their Debut

2016-12-22
This collection is a resource for studying the history of the evolving technologies that have contributed to snowmobiles becoming cleaner and quieter machines. Papers address design for a snowmobile using E10 gasoline (10% ethanol mixed with pump gasoline). Performance technologies that are presented include: • Engine Design: application of the four-stroke engine • Applications to address both engine and track noise • Exhaust After-treatment to reduce emissions The SAE International Clean Snowmobile Challenge (CSC) program is an engineering design competition. The program provides undergraduate and graduate students the opportunity to enhance their engineering design and project management skills by reengineering a snowmobile to reduce emissions and noise. The competition includes internal combustion engine categories that address both gasoline and diesel, as well as the zero emissions category in which range and draw bar performance are measured.
Journal Article

Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine

2016-10-17
2016-01-2364
Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of natural gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions.
Technical Paper

Efficiency and Emissions Mapping of a Light Duty Diesel - Natural Gas Engine Operating in Conventional Diesel and RCCI Modes

2016-10-17
2016-01-2309
Reactivity Controlled Compression Ignition (RCCI) is a promising dual-fuel Low Temperature Combustion (LTC) mode with significant potential for reducing NOx and particulate emissions while improving or maintaining thermal efficiency compared to Conventional Diesel Combustion (CDC) engines. The large reactivity difference between diesel and Natural Gas (NG) fuels provides a strong control variable for phasing and shaping combustion heat release. In this work, the Brake Thermal Efficiencies (BTE), emissions and combustion characteristics of a light duty 1.9L, four-cylinder diesel engine operating in single fuel diesel mode and in Diesel-NG RCCI mode are investigated and compared. The engine was operated at speeds of 1300 to 2500 RPM and loads of 1 to 7 bar BMEP. Operation was limited to 10 bar/deg Maximum Pressure Rise Rate (MPRR) and 6% Coefficient of Variation (COV) of IMEP.
Technical Paper

Fuel Economy Benefits of Integrating a Multi-Mode Low Temperature Combustion (LTC) Engine in a Series Extended Range Electric Powertrain

2016-10-17
2016-01-2361
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. Extended range electric vehicles (EREVs), by decoupling the engine from the drivetrain, allows the engine to operate in a limited operating range; thus, EREVs offer an ideal platform for realizing the advantages of LTC engines. In this study, the global optimum fuel economy improvement of an experimentally developed 2-liter multi-mode LTC engine in a series EREV is investigated. The engine operation modes include Homogeneous-Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI).
Journal Article

Grid-Tied Single-Phase Bi-Directional PEV Charging/Discharging Control

2016-04-05
2016-01-0159
This paper studies the bi-directional power flow control between Plug-in Electric Vehicles (PEVs) and an electrical grid. A grid-tied charging system that enables both Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) charging/discharging is modeled using SimPowerSystems in Matlab/Simulink environment. A bi-directional AC-DC converter and a bi-directional DC-DC buck-boost converter are integrated to charge and discharge PEV batteries. For AC-DC converter control, Predictive Current Control (PCC) strategy is employed to enable grid current to reach a reference current after one modulation period. In addition, Phase Lock Loop (PLL) and a band-stop filter are designed to lock the grid voltage phase and reduce harmonics. Bi-directional power flow is realized by controlling the mode of the DC-DC converter. Simulation tests are conducted to evaluate the performance of this bi-directional charging system.
Journal Article

Characteristics of Formaldehyde (CH2O) Formation in Dimethyl Ether (DME) Spray Combustion Using PLIF Imaging

2016-04-05
2016-01-0864
Recognition of Dimethyl Ether (DME) as an alternative fuel has been growing recently due to its fast evaporation and ignition in application of compression-ignition engine. Most importantly, combustion of DME produces almost no particulate matter (PM). The current study provides a further understanding of the combustion process in DME reacting spray via experiment done in a constant volume combustion chamber. Formaldehyde (CH2O), an important intermediate species in hydrocarbon combustion, has received much attention in research due to its unique contribution in chemical pathway that leads to the combustion and emission of fuels. Studies in other literature considered CH2O as a marker for UHC species since it is formed prior to diffusion flame. In this study, the formation of CH2O was highlighted both temporally and spatially through planar laser induced fluorescence (PLIF) imaging at wavelength of 355-nm of an Nd:YAG laser at various time after start of injection (ASOI).
Technical Paper

Fuel-Optimal Strategies for Vehicle Supported Military Microgrids

2016-04-05
2016-01-0312
Vehicles with power exporting capability are microgrids since they possess electrical power generation, onboard loads, energy storage, and the ability to interconnect. The unique load and silent watch requirements of some military vehicles make them particularly well-suited to augment stationary power grids to increase power resiliency and capability. Connecting multiple vehicles in a peer-to-peer arrangement or to a stationary grid requires scalable power management strategies to accommodate the possibly large numbers of assets. This paper describes a military ground vehicle power management scheme for vehicle-to-grid applications. The particular focus is overall fuel consumption reduction of the mixed asset inventory of military vehicles with diesel generators typically used in small unit outposts.
Technical Paper

Predictive Control of a Power-Split HEV with Fuel Consumption and SOC Estimation

2015-04-14
2015-01-1161
This paper studies model predictive control algorithm for Hybrid Electric Vehicle (HEV) energy management to improve HEV fuel economy. In this paper, Model Predictive Control (MPC), a predictive control method, is applied to improve the fuel economy of power-split HEV. A dedicated model predictive control method is developed to predict vehicle speed, battery state of charge (SOC), and engine fuel consumption. The power output from the engine, motor, and the mechanical brake will be adjusted to match driver's power request at the end of the prediction window while minimizing fuel consumption. The controller model is built on Matlab® MPC toolbox® and the simulations are based on MY04 Prius vehicle model using Autonomie®, a powertrain and fuel economy analysis software, developed by Argonne National Laboratory. The study compares the performance of MPC and conventional rule-base control methods.
Technical Paper

Sequential Model for Residual Affected HCCI with Variable Valve Timing

2015-04-14
2015-01-1748
In this study, the effects of Variable Valve Timing (VVT) on the performance of a Homogeneous Charge Compression Ignition (HCCI) engine are analyzed by developing a computationally efficient modeling approach for the HCCI engine cycle. A full engine cycle model called Sequential Model for Residual affected HCCI (SMRH) is developed using a multi zone thermo-kinetic combustion model coupled with flow dynamic models. The SMRH utilizes CHEMKIN®-PRO and GT-POWER® software along with an in-house exhaust gas flow model. Experimental data from a single cylinder HCCI engine is used to validate the model for different operating conditions. Validation results show a good agreement with experimental data for predicting combustion phasing, Indicated Mean Effective Pressure (IMEP), thermal efficiency as well as CO emission. The experimentally validated SMRH is then used to investigate the effects of intake and exhaust valve timing on residual affected HCCI engine combustion.
Technical Paper

Development of Chemical Kinetic Mechanism for Dimethyl Ether (DME) with Comprehensive Polycyclic Aromatic Hydrocarbon (PAH) and NOx Chemistry

2015-04-14
2015-01-0807
Dimethyl ether (DME) appears to be an attractive alternative to common fossil fuels in compression ignition engines due to its smokeless combustion and fast mixture formation. However, in order to fully understand the complex combustion process of DME, there is still a remaining need to develop a comprehensive chemical kinetic mechanism that includes both soot and NOx chemistry. In this study, a detailed DME mechanism with 305 species is developed from the basic DME mechanism of Curran et al. (2000) with addition of soot and NOx chemistry from Howard's mechanism et al. (1999), and GRI 3.0 mechanism, respectively. Soot chemistry in Howard mechanism consisting hydrogen abstraction acetylene addition (HACA) and growth of small polycyclic aromatic hydrocarbons (PAH), assesses over a wide range of temperature and is able to predict good to fair the formation of PAH up to coronene.
Technical Paper

Performance and Efficiency Assessment of a Production CNG Vehicle Compared to Its Gasoline Counterpart

2014-10-13
2014-01-2694
Two modern light-duty passenger vehicles were selected for chassis dynamometer testing to evaluate differences in performance end efficiency resulting from CNG and gasoline combustion in a vehicle-based context. The vehicles were chosen to be as similar as possible apart from fuel type, sharing similar test weights and identical driveline configurations. Both vehicles were tested over several chassis dynamometer driving cycles, where it was found that the CNG vehicle exhibited 3-9% lower fuel economy than the gasoline-fueled subject. Performance tests were also conducted, where the CNG vehicle's lower tractive effort capability and longer acceleration times were consistent with the lower rated torque and power of its engine as compared to the gasoline model. The vehicles were also tested using quasi-steady-state chassis dynamometer techniques, wherein a series of engine operating points were studied.
Journal Article

A Comparison of Cold-Start Behavior and its Impact on Fuel Economy for Advanced Technology Vehicles

2014-04-01
2014-01-1375
Vehicle operation during cold-start powertrain conditions can have a significant impact on drivability, fuel economy and tailpipe emissions in modern passenger vehicles. As efforts continue to maximize fuel economy in passenger vehicles, considerable engineering resources are being spent in order to reduce the consumption penalties incurred shortly after engine start and during powertrain warmup while maintaining suitably low levels of tailpipe emissions. Engine downsizing, advanced transmissions and hybrid-electric architecture can each have an appreciable effect on cold-start strategy and its impact on fuel economy. This work seeks to explore the cold-start strategy of several passenger vehicles with different powertrain architectures and to understand the resulting fuel economy impact relative to warm powertrain operation. To this end, four vehicles were chosen with different powertrain architectures.
Technical Paper

Stochastic Knock Detection, Control, Software Integration, and Evaluation on a V6 Spark-Ignition Engine under Steady-State Operation

2014-04-01
2014-01-1358
The ability to operate a spark-ignition (SI) engine near the knock limit provides a net reduction of engine fuel consumption. This work presents a real-time knock control system based on stochastic knock detection (SKD) algorithm. The real-time stochastic knock control (SKC) system is developed in MATLAB Simulink, and the SKC software is integrated with the production engine control strategy through ATI's No-Hooks. The SKC system collects the stochastic knock information and estimates the knock level based on the distribution of knock intensities fitting to a log-normal (LN) distribution. A desired knock level reference table is created under various engine speeds and loads, which allows the SKC to adapt to changing engine operating conditions. In SKC system, knock factor (KF) is an indicator of the knock intensity level. The KF is estimated by a weighted discrete FIR filter in real-time.
Technical Paper

Impact of Blending Gasoline with Isobutanol Compared to Ethanol on Efficiency, Performance and Emissions of a Recreational Marine 4-Stroke Engine

2014-04-01
2014-01-1230
This study evaluates iso-butanol as a pathway to introduce higher levels of alternative fuels for recreational marine engine applications compared to ethanol. Butanol, a 4-carbon alcohol, has an energy density closer to gasoline than ethanol. Isobutanol at 16 vol% blend level in gasoline (iB16) exhibits energy content as well as oxygen content identical to E10. Tests with these two blends, as well as indolene as a reference fuel, were conducted on a Mercury 90 HP, 4-stroke outboard engine featuring computer controlled sequential multi-port Electronic Fuel Injection (EFI). The test matrix included full load curves as well as the 5-mode steady-state marine engine test cycle. Analysis of the full load tests suggests that equal full load performance is achieved across the engine speed band regardless of fuel at a 15-20°C increase in exhaust gas temperatures for the alcohol blends compared to indolene.
Technical Paper

Development of Steel Clad Aluminum Brake

2013-09-30
2013-01-2054
Aluminum based brake rotors have been a priority research topic in the DOE 1999 Aluminum Industry Roadmap for the Automobile Market. After fourteen years, no satisfactory technology has been developed to solve the problem of aluminum's low working temperatures except the steel clad aluminum (SCA) brake technology. This technology research started at Michigan Technological University (MTU) in 2001 and has matured recently for commercial productions. The SCA brake rotor has a solid body and replaces the traditional convective cooling of a vented rotor with conductive cooling to a connected aluminum wheel. Much lower temperatures result with the aluminum wheel acting as a great heat sink/radiator. The steel cladding further increases the capability of the SCA rotor to withstand higher surface temperatures. During the road tests of SCA rotors on three cars, significant gas mileage improvement was found; primarily attributed to the unique capability of the SCA rotor on pad drag reduction.
Technical Paper

Two-Input Two-Output Control of Blended Fuel HCCI Engines

2013-04-08
2013-01-1663
Precise cycle-to-cycle control of combustion is the major challenge to reduce fuel consumption in Homogenous Charge Compression Ignition (HCCI) engines, while maintaining low emission levels. This paper outlines a framework for simultaneous control of HCCI combustion phasing and Indicated Mean Effective Pressure (IMEP) on a cycle-to-cycle basis. A dynamic control model is extended to predict behavior of HCCI engine by capturing main physical processes through an HCCI engine cycle. Performance of the model is validated by comparison with the experimental data from a single cylinder Ricardo engine. For 60 different steady state and transient HCCI conditions, the model predicts the combustion phasing and IMEP with average errors less than 1.4 CAD and 0.2 bar respectively. A two-input two-output controller is designed to control combustion phasing and IMEP by adjusting fuel equivalence ratio and blending ratio of two Primary Reference Fuels (PRFs).
Technical Paper

Modeling of Lithium-Ion Battery Management System and Regeneration Control Strategy for Hybrid Electric Vehicles

2013-04-08
2013-01-0939
Battery management system (BMS) plays a key role in the power management of hybrid electric vehicles (HEV). It measures the state of charge (SOC), state of health (SOH) of the battery, protects the battery package and extends cells' life cycles. For HEV applications, lithium-ion battery is usually selected as electric power source due to its high specific energy, high energy density, and long life cycle. However, the non-linear characteristic of a Li-ion battery, complicated electro-chemical model, and environmental factors, raises the difficulties in the real-time estimation of the SOC for a Li-ion battery. To address this challenge, a BMS for HEVs is modeled with MATLAB/Simulink. In addition, a regenerative braking control strategy is proposed to determine the magnitude of the regenerative torque based on the battery SOC.
X