Refine Your Search

Topic

Author

Search Results

Technical Paper

Numerical Investigation of Snow Accumulation on a Sensor Surface of Autonomous Vehicle

2020-04-14
2020-01-0953
Autonomous Vehicles (AVs) operate based on image information and 3D maps generated by sensors like cameras, LIDARs and RADARs. This information is processed by the on-board processing units to provide the right actuation signals to drive the vehicle. For safe operation, these sensors should provide continuous high quality data to the processing units without interruption in all driving conditions like dust, rain, snow and any other adverse driving conditions. Any contamination on the sensor surface/lens due to rain droplets, snow, and other debris would result in adverse impact to the quality of data provided for sensor fusion and this could result in error states for autonomous driving. In particular, snow is a common contamination condition during driving that might block a sensor surface or camera lens. Predicting and preventing snow accumulation over the sensor surface of an AV is important to overcome this challenge.
Journal Article

Value of Information for Comparing Dependent Repairable Assemblies and Systems

2018-04-03
2018-01-1103
This article presents an approach for comparing alternative repairable systems and calculating the value of information obtained by testing a specified number of such systems. More specifically, an approach is presented to determine the value of information that comes from field testing a specified number of systems in order to appropriately estimate the reliability metric associated with each of the respective repairable systems. Here the reliability of a repairable system will be measured by its failure rate. In support of the decision-making effort, the failure rate is translated into an expected utility based on a utility curve that represents the risk tolerance of the decision-maker. The algorithm calculates the change of the expected value of the decision with the sample size. The change in the value of the decision represents the value of information obtained from testing.
Technical Paper

Random Vibration Analysis Using Quasi-Random Bootstrapping

2018-04-03
2018-01-1104
Reliability analysis of engineering structures such as bridges, airplanes, and cars require calculation of small failure probabilities. These probabilities can be calculated using standard Monte Carlo simulation, but this method is impractical for most real-life systems because of its high computational cost. Many studies have focused on reducing the computational cost of a reliability assessment. These include bootstrapping, Separable Monte Carlo, Importance Sampling, and the Combined Approximations. The computational cost can also be reduced using an efficient method for deterministic analysis such as the mode superposition, mode acceleration, and the combined acceleration method. This paper presents and demonstrates a method that uses a combination of Sobol quasi-random sequences and bootstrapping to reduce the number of function calls. The study demonstrates that the use of quasi-random numbers in conjunction bootstrapping reduces dramatically computational cost.
Journal Article

Assessing the Value of Information for Multiple, Correlated Design Alternatives

2017-03-28
2017-01-0208
Design optimization occurs through a series of decisions that are a standard part of the product development process. Decisions are made anywhere from concept selection to the design of the assembly and manufacturing processes. The effectiveness of these decisions is based on the information available to the decision maker. Decision analysis provides a structured approach for quantifying the value of information that may be provided to the decision maker. This paper presents a process for determining the value of information that can be gained by evaluating linearly correlated design alternatives. A unique approach to the application of Bayesian Inference is used to provide simulated estimates in the expected utility with increasing observations sizes. The results provide insight into the optimum observation size that maximizes the expected utility when assessing correlated decision alternatives.
Book

Clean Snowmobile Challenge - 3: Refinement of Production Engines and New Control Strategies

2017-03-01
This collection is a resource for studying the history of the evolving technologies that have contributed to snowmobiles becoming cleaner and quieter machines. Papers address design for a snowmobile using the EPA test procedure and standard for off-road vehicles, along with more stringent U.S. National Park Best Available Technology (BAT) standards that are likened to those of the California Air Resourced Board (CARB). Innovative technology solutions include: • Standard application for diesel engine designs • Applications to address and test both engine and track noise • Benefits of the Miller cycle and turbocharging The SAE International Clean Snowmobile Challenge (CSC) program is an engineering design competition. The program provides undergraduate and graduate students the opportunity to enhance their engineering design and project management skills by reengineering a snowmobile to reduce emissions and noise.
Book

Clean Snowmobile Challenge - 1: The Early Years, 4-Stroke Engines Make Their Debut

2016-12-22
This collection is a resource for studying the history of the evolving technologies that have contributed to snowmobiles becoming cleaner and quieter machines. Papers address design for a snowmobile using E10 gasoline (10% ethanol mixed with pump gasoline). Performance technologies that are presented include: • Engine Design: application of the four-stroke engine • Applications to address both engine and track noise • Exhaust After-treatment to reduce emissions The SAE International Clean Snowmobile Challenge (CSC) program is an engineering design competition. The program provides undergraduate and graduate students the opportunity to enhance their engineering design and project management skills by reengineering a snowmobile to reduce emissions and noise. The competition includes internal combustion engine categories that address both gasoline and diesel, as well as the zero emissions category in which range and draw bar performance are measured.
Technical Paper

Numerical Simulations for Spray Characterization of Uneven Multiple Jet-to-Jet Impingement Injectors

2016-04-05
2016-01-0840
Spray structure has a significant effect on emissions and performance of an internal combustion engine. The main objective of this study is to investigate spray structures based on four different multiple jet impingement injectors. These four different multiple jet-to-jet impingement injectors include 1). 4-hole injector (Case 1), which has symmetric inwardly opening nozzles; 2). 5-1-hole (Case 2); 3). 6-2-hole (Case 3); and 4). 7-3-hole (Case 4) which corresponding to 1, 2, 3 numbers of adjacent holes blocked in a 5-hole, 6-hole, and 7-hole symmetrical drill pattern, respectively. All these configurations are basically 4-holes but with different post collision spray structure. Computational Fluid Dynamics (CFD) work of these sprays has been performed using an Eulerian-Lagrangian modelling approach.
Technical Paper

Innovative Exergy-Based Combustion Phasing Control of IC Engines

2016-04-05
2016-01-0815
Exergy or availability is the potential of a system to do work. In this paper, an innovative exergy-based control approach is presented for Internal Combustion Engines (ICEs). An exergy model is developed for a Homogeneous Charge Compression Ignition (HCCI) engine. The exergy model is based on quantification of the Second Law of Thermodynamic (SLT) and irreversibilities which are not identified in commonly used First Law of Thermodynamics (FLT) analysis. An experimental data set for 175 different ICE operating conditions is used to construct the SLT efficiency maps. Depending on the application, two different SLT efficiency maps are generated including the applications in which work is the desired output, and the applications where Combined Power and Exhaust Exergy (CPEX) is the desired output. The sources of irreversibility and exergy loss are identified for a single cylinder Ricardo HCCI engine.
Technical Paper

Inverse Modeling: Theory and Engineering Examples

2016-04-05
2016-01-0267
Over the last two decades inverse problems have become increasingly popular due to their widespread applications. This popularity continuously demands designers to find alternative methods, to solve the inverse problems, which are efficient and accurate. It is important to use effective techniques that are both accurate and computationally efficient. This paper presents a method for solving inverse problems through Artificial Neural Network (ANN) theory. The paper also presents a method to apply Grey Wolf optimizer (GWO) algorithm to inverse problems. GWO is a recent optimization method producing superior results. Both methods are then compared to traditional methods such as Particle Swarm Optimization (PSO) and Markov Chain Monte Carlo (MCMC). Four typical engineering design problems are used to compare the four methods. The results show that the GWO outperforms other methods both in terms of efficiency and accuracy.
Journal Article

Bootstrapping and Separable Monte Carlo Simulation Methods Tailored for Efficient Assessment of Probability of Failure of Structural Systems

2015-04-14
2015-01-0420
There is randomness in both the applied loads and the strength of systems. Therefore, to account for the uncertainty, the safety of the system must be quantified using its reliability. Monte Carlo Simulation (MCS) is widely used for probabilistic analysis because of its robustness. However, the high computational cost limits the accuracy of MCS. Smarslok et al. [2010] developed an improved sampling technique for reliability assessment called Separable Monte Carlo (SMC) that can significantly increase the accuracy of estimation without increasing the cost of sampling. However, this method was applied to time-invariant problems involving two random variables. This paper extends SMC to problems with multiple random variables and develops a novel method for estimation of the standard deviation of the probability of failure of a structure. The method is demonstrated and validated on reliability assessment of an offshore wind turbine under turbulent wind loads.
Technical Paper

Experimental and Numerical Studies on Combustion Model Selection for Split Injection Spray Combustion

2015-04-14
2015-01-0374
A wide variety of spray models and their associated sub-models exist to assist with numerical spray development studies in the many applicable areas viz., turbines, internal combustion engines etc. The accuracy of a simulation when compared to the experiments varies, as these models chosen are varied. Also, the computational grid plays a crucial role in model correctness; a grid-converged CFD study is more valuable and assists in proper validation at later stages. Of primary relevance to this paper are the combustion models for a grid-converged Lagrangian spray modeling scenario. CONVERGE CFD code is used for simulation of split injection diesel (n-heptane) sprays and a structured methodology, using RNG k-ε turbulence model, is followed to obtain a grid-converged solution for the key Computational Fluid Dynamics (CFD) parameters viz., grid size, injected parcels and spray break-up time constant.
Technical Paper

Combined Approximation for Efficient Reliability Analysis of Linear Dynamic Systems

2015-04-14
2015-01-0424
The Combined Approximation (CA) method is an efficient reanalysis method that aims at reducing the cost of optimization problems. The CA uses results of a single exact analysis, and it is suitable for different types of structures and design variables. The second author utilized CA to calculate the frequency response function of a system at a frequency of interest by using the results at a frequency in the vicinity of that frequency. He showed that the CA yields accurate results for small frequency perturbations. This work demonstrates a methodology that utilizes CA to reduce the cost of Monte Carlo simulation (MCs) of linear systems under random dynamic loads. The main idea is to divide the power spectral density function (PSD) of the input load into several frequency bins before calculating the load realizations.
Technical Paper

Multi-Level Decoupled Optimization of Wind Turbine Structures

2015-04-14
2015-01-0434
This paper proposes a multi-level decoupled method for optimizing the structural design of a wind turbine blade. The proposed method reduces the design space by employing a two-level optimization process. At the high-level, the structural properties of each section are approximated by an exponential function of the distance of that section from the blade root. High-level design variables are the coefficients of this approximating function. Target values for the structural properties of the blade are determined at that level. At the low-level, sections are divided into small decoupled groups. For each section, the low-level optimizer finds the thickness of laminate layers with a minimum mass, whose structural properties meet the targets determined by the high-level optimizer. In the proposed method, each low-level optimizer only considers a small number of design variables for a particular section, while traditional, single-level methods consider all design variables simultaneously.
Journal Article

A Comparison of Cold-Start Behavior and its Impact on Fuel Economy for Advanced Technology Vehicles

2014-04-01
2014-01-1375
Vehicle operation during cold-start powertrain conditions can have a significant impact on drivability, fuel economy and tailpipe emissions in modern passenger vehicles. As efforts continue to maximize fuel economy in passenger vehicles, considerable engineering resources are being spent in order to reduce the consumption penalties incurred shortly after engine start and during powertrain warmup while maintaining suitably low levels of tailpipe emissions. Engine downsizing, advanced transmissions and hybrid-electric architecture can each have an appreciable effect on cold-start strategy and its impact on fuel economy. This work seeks to explore the cold-start strategy of several passenger vehicles with different powertrain architectures and to understand the resulting fuel economy impact relative to warm powertrain operation. To this end, four vehicles were chosen with different powertrain architectures.
Technical Paper

Stochastic Knock Detection, Control, Software Integration, and Evaluation on a V6 Spark-Ignition Engine under Steady-State Operation

2014-04-01
2014-01-1358
The ability to operate a spark-ignition (SI) engine near the knock limit provides a net reduction of engine fuel consumption. This work presents a real-time knock control system based on stochastic knock detection (SKD) algorithm. The real-time stochastic knock control (SKC) system is developed in MATLAB Simulink, and the SKC software is integrated with the production engine control strategy through ATI's No-Hooks. The SKC system collects the stochastic knock information and estimates the knock level based on the distribution of knock intensities fitting to a log-normal (LN) distribution. A desired knock level reference table is created under various engine speeds and loads, which allows the SKC to adapt to changing engine operating conditions. In SKC system, knock factor (KF) is an indicator of the knock intensity level. The KF is estimated by a weighted discrete FIR filter in real-time.
Technical Paper

Reliability Analysis of Composite Inflatable Space Structures Considering Fracture Failure

2014-04-01
2014-01-0715
Inflatable space structures can have lower launching cost and larger habitat volume than their conventional rigid counterparts. These structures are made of composite laminates, and they are flexible when folded and partially inflated. They contain light-activated resins, and can be cured with the sun light after being inflated in space. A spacecraft can burst due to cracks caused by meteor showers or debris. Therefore, it is critical to identify the important fracture failure modes, and assess their probability. This information will help a designer minimize the risk of failure and keep the mass and cost low. This paper presents a probabilistic approach for finding the required thickness of an inflatable habitat shell for a prescribed reliability level, and demonstrates the superiority of probabilistic design to its deterministic counterpart.
Journal Article

Rapid Prototyping Energy Management System for a Single Shaft Parallel Hybrid Electric Vehicle Using Hardware-in-the-Loop Simulation

2013-04-08
2013-01-0155
Energy management is one of the key challenges for the development of Hybrid Electric Vehicle (HEV) due to its complex powertrain structure. Hardware-In-the-Loop (HIL) simulation provides an open software architecture which enables rapid prototyping HEV energy management system. This paper presents the investigation of the energy management system for a single shaft parallel hybrid electric vehicle using dSPACE eDrive HIL system. The parallel hybrid electric vehicle, energy management system, and low-level Electronic Control Unit (ECU) were modeled using dSPACE Automotive Simulation Models and dSPACE blocksets. Vehicle energy management is achieved by a vehicle-level controller called hybrid ECU, which controls vehicle operation mode and torque distribution among Internal Combustion Engine (ICE) and electric motor. The individual powertrain components such as ICE, electric motor, and transmission are controlled by low-level ECUs.
Journal Article

Investigation of Key Mechanisms for Liquid Length Fluctuations in Transient Vaporizing Diesel Sprays

2013-04-08
2013-01-1594
Diesel combustion and emissions formation is spray and mixing controlled and understanding spray parameters is key to determining the impact of fuel injector operation and nozzle design on combustion and emissions. In this study, both spray visualization and computational fluid dynamics (CFD) modeling were undertaken to investigate key mechanisms for liquid length fluctuations. For the experimental portion of this study a common rail piezoelectric injector was tested in an optically accessible constant volume combustion vessel. Liquid penetration of the spray was determined via processing of images acquired from Mie back scattering under vaporizing conditions by injecting into a charge gas at elevated temperature with a 0% oxygen environment. Tests were undertaken at a gas density of 34.8 kg/m₃, 2000 bar injection pressure, and at ambient temperatures of 900, 1100, and 1300 K.
Journal Article

Managing the Computational Cost of Monte Carlo Simulation with Importance Sampling by Considering the Value of Information

2013-04-08
2013-01-0943
Importance Sampling is a popular method for reliability assessment. Although it is significantly more efficient than standard Monte Carlo simulation if a suitable sampling distribution is used, in many design problems it is too expensive. The authors have previously proposed a method to manage the computational cost in standard Monte Carlo simulation that views design as a choice among alternatives with uncertain reliabilities. Information from simulation has value only if it helps the designer make a better choice among the alternatives. This paper extends their method to Importance Sampling. First, the designer estimates the prior probability density functions of the reliabilities of the alternative designs and calculates the expected utility of the choice of the best design. Subsequently, the designer estimates the likelihood function of the probability of failure by performing an initial simulation with Importance Sampling.
Technical Paper

Development of a 1-D Catalyzed Diesel Particulate Filter Model for Simulation of the Oxidation of Particulate Matter and Gaseous Species During Passive Oxidation and Active Regeneration

2013-04-08
2013-01-1574
Numerical modeling of aftertreatment systems has been proven to reduce development time as well as to facilitate understanding of the internal physical and chemical processes occurring during different operating conditions. Such a numerical model for a catalyzed diesel particulate filter (CPF) was developed in this research work which has been improved from an existing numerical model briefly described in reference. The focus of this CPF model was to predict the effect of the catalyst on the gaseous species concentrations and to develop particulate matter (PM) filtration and oxidation models for the PM cake layer and substrate wall so as to develop an overall model that accurately predicts the pressure drop and PM oxidized during passive oxidation and active regeneration. Descriptions of the governing equations and corresponding numerical methods used with relevant boundary conditions are presented.
X