Refine Your Search

Topic

Author

Search Results

Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Deliver Signal Phase and Timing (SPAT) for Energy Optimization of Vehicle Cohort Via Cloud-Computing and LTE Communications

2023-04-11
2023-01-0717
Predictive Signal Phase and Timing (SPAT) message set is one fundamental building block for vehicle-to-infrastructure (V2I) applications such as Eco-Approach and Departure (EAD) at traffic signal controlled urban intersections. Among the two complementary communication methods namely short-range sidelink (PC5) and long-range cellular radio link (Uu), this paper documents the work with long-range link: the complete data chain includes connecting to the traffic signals via existing backhaul communication network, collecting the raw signal phase state data, predicting the signal state changes and delivering the SPAT data via a geofenced service to requests over HTTP protocols. An Application Programming Interface (API) library is developed to support various cellular data transmission reduction and latency improvement techniques.
Technical Paper

Engine On/Off Optimization for an xHEV during Charge Sustaining Operation on Real World Driving Routes Using Connectivity Data

2021-04-06
2021-01-0433
This paper presents a methodology that optimizes the periods of engine operation on a selected route for a Plug-in Hybrid Electric Vehicle (PHEV) or Hybrid Electric Vehicle (HEV) using Connected Vehicle data to minimize energy consumption. The study was conducted using a Reduced-Order Powertrain model of second-generation Chevrolet Volt. The method utilizes the Backward Induction Dynamic Programming algorithm to come up with an optimal control mode matrix of engine operation along the selected route for various battery states of charge. The objective of this method is to make use of Vehicle Connectivity to minimize the energy utilization of an HEV by using the speed and elevation profile of a selected route transmitted to the vehicle via V2X communication systems.
Technical Paper

Studies on Simulation and Real Time Implementation of LQG Controller for Autonomous Navigation

2021-04-06
2021-01-0108
The advancement in embedded systems and positional accuracy with base station GPS modules created opportunity to develop high performance autonomous ground vehicles. However, the development of vehicle model and making accurate state estimations play vital role in reducing the cross track error. The present research focus on developing Linear Quadratic Gaussian (LQG) with Kalman estimator for autonomous ground vehicle to track various routes, that are made with the series of waypoints. The model developed in the LQG controller is a kinematic bicycle model, which mimics 1/5th scale truck. Further, the cubic spline fit has been used to connect the waypoints and generate the continuous desired/target path. The testing and implementation has been done at APS labs, MTU on the mentioned vehicle to study the performance of controller. Python has been used for simulations, controller coding and interfacing the sensors with controller.
Technical Paper

A Numerical Study for the Effect of Liquid Film on Soot Formation of Impinged Spray Combustion

2021-04-06
2021-01-0543
Spray impingement is an important phenomenon that introduces turbulence into the spray that promotes fuel vaporization, air entrainment and flame propagation. However, liquid impingement on the surface leads to wall-wetting and film deposition. The film region is a fuel-rich zone and it has potentials to produce higher emission. Film deposition in a non-reacting spray was studied previously but not in a reacting spray. In the current study, the film deposition of a reacting diesel spray was studied through computational fluid dynamic (CFD) simulations under a variety of ambient temperatures, gas compositions and impinging distances. Characteristics of film mass, distribution of thickness, soot formation and temperature distributions were investigated. Simulation results showed that under the same impinging distance, higher ambient temperature reduced film mass but showed the same liquid film pattern.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Real Fuel Modeling for Gasoline Compression Ignition Engine

2020-04-14
2020-01-0784
Increasing regulatory demand for efficiency has led to development of novel combustion modes such as HCCI, GCI and RCCI for gasoline light duty engines. In order to realize HCCI as a compression ignition combustion mode system, in-cylinder compression temperatures must be elevated to reach the autoignition point of the premixed fuel/air mixture. This should be co-optimized with appropriate fuel formulations that can autoignite at such temperatures. CFD combustion modeling is used to model the auto ignition of gasoline fuel under compression ignition conditions. Using the fully detailed fuel mechanism consisting of thousands of components in the CFD simulations is computationally expensive. To overcome this challenge, the real fuel is represented by few major components of create a surrogate fuel mechanism. In this study, 9 variations of gasoline fuel sets were chosen as candidates to run in HCCI combustion mode.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Technical Paper

The Utilization of Onboard Sensor Measurements for Estimating Driveline Damping

2019-06-05
2019-01-1529
The proliferation of small silicon micro-chips has led to a large assortment of low-cost transducers for data acquisition. Production vehicles on average exploit more than 60 on board sensors, and that number is projected to increase beyond 200 per vehicle by 2020. Such a large increase in sensors is leading the fourth industrial revolution of connectivity and autonomy. One major downfall to installing many sensors is compromises in their accuracy and processing power due to cost limitations for high volume production. The same common errors in data acquisition such as sampling, quantization, and multiplexing on the CAN bus must be accounted for when utilizing an entire array of vehicle sensors. A huge advantage of onboard sensors is the ability to calculate vehicle parameters during a daily drive cycle to update ECU calibration factors in real time. One such parameter is driveline damping, which changes with gear state and drive mode. A damping value is desired for every gear state.
Journal Article

Multi-Physics and CFD Analysis of an Enclosed Coaxial Carbon Nanotube Speaker for Automotive Exhaust Noise Cancellation

2019-06-05
2019-01-1569
Automotive exhaust noise is one of the major sources of noise pollution and it is controlled by passive control system (mufflers) and active control system (loudspeakers and active control algorithm). Mufflers are heavy, bulky and large in size while loudspeakers have a working temperature limitation. Carbon nanotube (CNT) speakers generate sound due to the thermoacoustic effect. CNT speakers are also lightweight, flexible, have acoustic and light transparency as well as high operating temperature. These properties make them ideal to overcome the limitations of the current exhaust noise control systems. An enclosed, coaxial CNT speaker is designed for exhaust noise cancellation application. The development of a 3D multi-physics (coupling of electrical, thermal and acoustical domains) model, for the coaxial speaker is discussed in this paper. The model is used to simulate the sound pressure level, input power versus ambient temperature and efficiency.
Journal Article

Investigation and Optimization of Cam Actuation of an Over-Expanded Atkinson Cycle Spark-Ignited Engine

2019-04-02
2019-01-0250
An over-expanded spark ignited engine was investigated in this work via engine simulation with a design constrained, mechanically actuated Atkinson cycle mechanism. A conventional 4-stroke spark-ignited turbo-charged engine with a compression ratio of 9.2 and peak brake mean effective pressure of 22 bar was selected for the baseline engine. With geometry and design constraints including bore, stroke, compression ratio, clearance volume at top dead center (TDC) firing, and packaging, one over-expanded engine mechanism with over expansion ratio (OER) of 1.5 was designed. Starting with a validated 1D engine simulation model which included calibration of the in-cylinder heat transfer model and SI turbulent combustion model, investigations of the Atkinson engine including cam optimization was studied. The engine simulation study included the effects of offset of piston TDC locations as well as different durations of the 4-strokes due to the mechanism design.
Technical Paper

Development of a Transient Spray Cone Angle Correlation for CFD Simulations at Diesel Engine Conditions

2018-04-03
2018-01-0304
The accurate modeling of fuel spray behavior under diesel engine conditions requires well-characterized boundary conditions. Among those conditions, the spray cone angle is important due to its impact on the spray mixing process, flame lift-off locations and subsequent soot formation. The spray cone angle is a highly dynamic variable, but existing correlations have been developed mainly for diesel fuels at quasi-steady state and relatively low injection pressures. The objective of this study was to develop spray cone angle correlations for both diesel and a light-end gasoline fuel over a wide range of diesel-engine operating conditions that are capable of capturing both the transient and quasi-steady state processes. Two important macroscopic characteristics of solid cone sprays, the spray cone angle and spray penetration, were measured using a single-hole heavy-duty injector using two fuels at diesel engine conditions in an optical constant volume vessel.
Technical Paper

Autonomous Vehicle Sensor Suite Data with Ground Truth Trajectories for Algorithm Development and Evaluation

2018-04-03
2018-01-0042
This paper describes a multi-sensor data set, suitable for testing algorithms to detect and track pedestrians and cyclists, with an autonomous vehicle’s sensor suite. The data set can be used to evaluate the benefit of fused sensing algorithms, and provides ground truth trajectories of pedestrians, cyclists, and other vehicles for objective evaluation of track accuracy. One of the principal bottlenecks for sensing and perception algorithm development is the ability to evaluate tracking algorithms against ground truth data. By ground truth we mean independent knowledge of the position, size, speed, heading, and class of objects of interest in complex operational environments. Our goal was to execute a data collection campaign at an urban test track in which trajectories of moving objects of interest are measured with auxiliary instrumentation, in conjunction with several autonomous vehicles (AV) with a full sensor suite of radar, lidar, and cameras.
Technical Paper

Development of a Reduced Chemical Mechanism for Combustion of Gasoline-Biofuels

2017-09-04
2017-24-0039
Bio-derived fuels are drawing more and more attention in the internal combustion engine (ICE) research field in recent years. Those interests in use of renewable biofuels in ICE applications derive from energy security issues and, more importantly, from environment pollutant emissions concerns. High fidelity numerical study of engine combustion requires advanced computational fluid dynamics (CFD) to be coupled with detailed chemical kinetic models. This task becomes extremely challenging if real fuels are taken into account, as they include a mixture of hundreds of different hydrocarbons, which prohibitively increases computational cost. Therefore, along with employing surrogate fuel models, reduction of detailed kinetic models for multidimensional engine applications is preferred. In the present work, a reduced mechanism was developed for primary reference fuel (PRF) using the directed relation graph (DRG) approach. The mechanism was generated from an existing detailed mechanism.
Journal Article

An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

2017-03-28
2017-01-0854
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGETM framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

2017-03-28
2017-01-0527
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
Technical Paper

Numerical Study on Evaporation of Spherical Droplets Impinging on the Wall Using Volume of Fluid (VOF) Model

2017-03-28
2017-01-0852
This paper aims to extend the existing Volume of Fluid (VOF) model by implementing an evaporation sub-model in an open source Computational Fluid Dynamics (CFD) software, OpenFOAM. The paper applies the new model to numerically study the evaporation of spherical n-heptane droplets impinging on a hot wall at atmospheric pressure and a temperature above the Leidenfrost temperature. Volume of Fluid (VOF) method is chosen to track the liquid gas interface and the capability of VOF method implemented in interDyMFoam solver of OpenFOAM to simulate hydrodynamics during droplet-droplet interaction and droplet-film interaction is explored. Firstly, the in-built solver is used to simulate problems in isothermal conditions and the simulation results are compared qualitatively with the published results to validate the solver. A numerical method for modeling heat and mass transfer during evaporation is implemented in conjunction with the VOF.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Technical Paper

Investigation of Multi-Hole Impinging Jet High Pressure Spray Characteristics under Gasoline Engine-Like Conditions

2016-04-05
2016-01-0847
Impingement of jet-to-jet has been found to give improved spray penetration characteristics and higher vaporization rates when compared to multi-hole outwardly injecting fuel injectors which are commonly used in the gasoline engine. The current work studies a non-reacting spray by using a 5-hole impinging-jet style direct-injection injector. The jet-to-jet collision induced by the inwardly opening nozzles of the multi-hole injector produces rapid and short jet breakup which is fundamentally different from how conventional fuel injectors operate. A non-reacting spray study is performed using a 5-hole impinging jet injector and a traditional 6-hole Bosch Hochdruck-Einspritzventil (HDEV)-5 gasoline direct-injection (GDI) injector with gasoline as a fuel injected at 172 bar pressure with ambient temperature of 653 K and 490 K and ambient pressure of 37.4 bar and 12.4 bar.
X