Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Numerical Study of a Six-Stroke Gasoline Compression Ignition (6S-GCI) Engine Combustion with Oxygenated Fuels

2024-04-09
2024-01-2373
A numerical investigation of a six-stroke direct injection compression ignition engine operation in a low temperature combustion (LTC) regime is presented. The fuel employed is a gasoline-like oxygenated fuel consisting of 90% isobutanol and 10% diethyl ether (DEE) by volume to match the reactivity of conventional gasoline with octane number 87. The computational simulations of the in-cylinder processes were performed using a high-fidelity multidimensional in-house 3D CFD code (MTU-MRNT) with improved spray-sub models and CHEMKIN library. The combustion chemistry was described using a two-component (isobutanol and DEE) fuel model whose oxidation pathways were given by a reaction mechanism with 177 species and 796 reactions.
Technical Paper

Development and Validation of Dynamic Programming based Eco Approach and Departure Algorithm

2024-04-09
2024-01-1998
Eco Approach and Departure (Eco-AnD) is a Connected Automated Vehicle (CAV) technology aiming to reduce energy consumption for crossing a signalized intersection or set of intersections in a corridor that features vehicle-to-infrastructure (V2I) communication capability. This research focuses on developing a Dynamic Programming (DP) based algorithm for a PHEV operating in Charge Depleting mode. The algorithm used the Reduced Order Energy Model (ROM) to capture the vehicle powertrain characteristics and road grade to capture the road dynamics. The simulation results are presented for a real-world intersection and 20-25% energy benefits are shown by comparing against a simulated human driver speed profile. The vehicle-level validation of the developed algorithm is carried out by performing closed-course track testing of the optimized speed solutions on a real CAV vehicle.
Technical Paper

Facilitating Project-Based Learning Through Application of Established Pedagogical Methods in the SAE AutoDrive Challenge Student Design Competition

2024-04-09
2024-01-2075
The AutoDrive Challenge competition sponsored by General Motors and SAE gives undergraduate and graduate students an opportunity to get hands-on experience with autonomous vehicle technology and development as they work towards their degree. Michigan Technological University has participated in the AutoDrive Challenge since its inception in 2017 with students participating through MTU’s Robotic System Enterprise. The MathWorks Simulation Challenge has been a component of the competition since its second year, tasking students with the development of perception, control and testing algorithms using MathWorks software products. This paper presents the pedagogical approach graduate student mentors used to enable students to build their understanding of autonomous vehicle concepts using familiar tools. This approach gives undergraduate students a productive experience with these systems that they may not have encountered in coursework within their academic program.
Technical Paper

Measurement of Hydrogen Jet Equivalence Ratio using Laser Induced Breakdown Spectroscopy

2024-04-09
2024-01-2623
Hydrogen exhibits the notable attribute of lacking carbon dioxide emissions when used in internal combustion engines. Nevertheless, hydrogen has a very low energy density per unit volume, along with large emissions of nitrogen oxides and the potential for backfire. Thus, stratified charge combustion (SCC) is used to reduce nitrogen oxides and increase engine efficiency. Although SCC has the capacity to expand the lean limit, the stability of combustion is influenced by the mixture formation time (MFT), which determines the equivalence ratio. Therefore, quantifying the equivalence ratio under different MFT is critical since it determines combustion characteristics. This study investigates the viability of using a Laser Induced Breakdown Spectroscopy (LIBS) for measuring the jet equivalence ratio. Furthermore, study was conducted to analyze the effect of MFT and the double injection parameter, namely the dwell time and split ratio, on the equivalence ratio.
Technical Paper

Development of a Multiple Injection Strategy for Heated Gasoline Compression Ignition (HGCI)

2023-04-11
2023-01-0277
A multiple-injection combustion strategy has been developed for heated gasoline direct injection compression ignition (HGCI). Gasoline was injected into a 0.4L single cylinder engine at a fuel pressure of 300bar. Fuel temperature was increased from 25degC to a temperature of 280degC by means of electric injector heater. This approach has the potential of improving fuel efficiency, reducing harmful CO and UHC as well as particulate emissions, and reducing pressure rise rates. Moreover, the approach has the potential of reducing fuel system cost compared to high pressure (>500bar) gasoline direct injection fuel systems available in the market for GDI SI engines that are used to reduce particulate matter. In this study, a multiple injection strategy was developed using electric heating of the fuel prior to direct fuel injection at engine speed of 1500rpm and load of 12.3bar IMEP.
Technical Paper

Design and Optimization of Steering Assembly for Baja ATV Vehicle

2023-04-11
2023-01-0161
The steering assembly is a part of an automotive suspension system that provides control and stability. It provides control of direction, stability, and control over placement of the car. Optimization of the vehicle in weight results in enhanced performance and low fuel consumption, more so for an all-terrain race car. Optimization in this paper loosely refers to weight reduction and achieving the optimum stiffness to weight ratio of each component. This research encompasses various aspects linked to conceptualizing, designing, analysing, optimizing, and finally manufacturing the steering sub-system. Analytical calculations for mechanical design were performed using data from various experiments and jigs. CAD was developed using SolidWorks, and various analyses were performed using Altair HyperWorks. Finite Element Analysis (FEA) was primarily used to build stress plots and locate weak spots aiding optimization.
Technical Paper

Assessment of Fuel Consumption of a co-Optimized Gasoline Compression Ignition Engine in a Hybrid Electric Vehicle Platform

2023-04-11
2023-01-0467
Increasing regulatory demand to reduce CO2 emissions has led to an industry focus on electrified vehicles while limiting the development of conventional internal combustion engine (ICE) and hybrid powertrains. Hybrid electric vehicle (HEV) powertrains rely on conventional SI mode IC engines that are optimized for a narrow operating range. Advanced combustion strategies such as Gasoline Compression Ignition (GCI) have been demonstrated by several others including the authors to improve brake thermal efficiency compared to both gasoline SI and Diesel CI modes. Soot and NOx emissions are also reduced significantly by using gasoline instead of diesel in GCI engines due to differences in composition, fuel properties, and reactivity. In this work, an HEV system was proposed utilizing a multi-mode GCI based ICE combined with a HEV components (e-motor, battery, and invertor).
Technical Paper

HIL Demonstration of Energy Management Strategy for Real World Extreme Fast Charging Stations with Local Battery Energy Storage Systems

2023-04-11
2023-01-0701
Extreme Fast Charging (XFC) infrastructure is crucial for an increase in electric vehicle (EV) adoption. However, an unmanaged implementation may lead to negative grid impacts and huge power costs. This paper presents an optimal energy management strategy to utilize grid-connected Energy Storage Systems (ESS) integrated with XFC stations to mitigate these grid impacts and peak demand charges. To achieve this goal, an algorithm that controls the charge and discharge of ESS based on an optimal power threshold is developed. The optimal power threshold is determined to carry out maximum peak shaving for given battery size and SOC constraints.
Technical Paper

Development of Multiple Injection Strategy for Gasoline Compression Ignition High Performance and Low Emissions in a Light Duty Engine

2022-03-29
2022-01-0457
The increase in regulatory demand to reduce CO2 emissions resulted in a focus on the development of novel combustion modes such as gasoline compression ignition (GCI). It has been shown by others that GCI can improve the overall engine efficiency while achieving soot and NOx emissions targets. In comparison with diesel fuel, gasoline has a higher volatility and has more resistance to autoignition, therefore, it has a longer ignition delay time which facilitates better mixing of the air-fuel charge before ignition. In this study, a GCI combustion system has been tested using a 2.2L compression ignition engine as part of a US Department of Energy funded project. For this purpose, a multiple injection strategy was developed to improve the pressure rise rates and soot emission levels for the same engine out NOx emissions.
Journal Article

Decision-Making for Autonomous Mobility Using Remotely Sensed Terrain Parameters in Off-Road Environments

2021-04-06
2021-01-0233
Off-road vehicle operation requires constant decision-making under great uncertainty. Such decisions are multi-faceted and range from acquisition decisions to operational decisions. A major input to these decisions is terrain information in the form of soil properties. This information needs to be propagated to path planning algorithms that augment them with other inputs such as visual terrain assessment and other sensors. In this sequence of steps, many resources are needed, and it is not often clear how best to utilize them. We present an integrated approach where a mission’s overall performance is measured using a multiattribute utility function. This framework allows us to evaluate the value of acquiring terrain information and then its use in path planning. The computational effort of optimizing the vehicle path is also considered and optimized. We present our approach using the data acquired from the Keweenaw Research Center terrains and present some results.
Technical Paper

A Numerical Study for the Effect of Liquid Film on Soot Formation of Impinged Spray Combustion

2021-04-06
2021-01-0543
Spray impingement is an important phenomenon that introduces turbulence into the spray that promotes fuel vaporization, air entrainment and flame propagation. However, liquid impingement on the surface leads to wall-wetting and film deposition. The film region is a fuel-rich zone and it has potentials to produce higher emission. Film deposition in a non-reacting spray was studied previously but not in a reacting spray. In the current study, the film deposition of a reacting diesel spray was studied through computational fluid dynamic (CFD) simulations under a variety of ambient temperatures, gas compositions and impinging distances. Characteristics of film mass, distribution of thickness, soot formation and temperature distributions were investigated. Simulation results showed that under the same impinging distance, higher ambient temperature reduced film mass but showed the same liquid film pattern.
Journal Article

Increasing the Effective AKI of Fuels Using Port Water Injection (Part I)

2021-04-06
2021-01-0470
Anti-knock index (AKI) is a metric that can be used to quantify the anti-knock performance of a fuel and is the metric used in the United States. AKI is the average of Research Octane Number (RON) and Motor Octane Number (MON), which are calculated for every fuel on a Cooperative Fuel Research (CFR) engine under controlled conditions according to ASTM test procedures. Fuels with higher AKI have better knock mitigating properties and can be run with a combustion phasing closer to MBT in the knock limited operating region of a gasoline engine. However, fuels with higher AKI tend to be costlier and less environmentally friendly to produce. As an alternative, the anti-knock characteristics of lower AKI fuels can be improved with water injection. In this sense, the water injection increases the ‘effective AKI’ of the fuel.
Journal Article

Fuel Effects on the Propensity to Establish Propagating Flames at SPI-Relevant Engine Conditions

2021-04-06
2021-01-0488
In order to further understand the sequence of events leading to stochastic preignition in a spark-ignition engine, a methodology previously developed by the authors was used to evaluate the propensity of a wide range of fuels to establishing propagating flames under conditions representative of those at which stochastic preignition (SPI) occurs. The fuel matrix included single component hydrocarbons, binary mixtures, and real fuel blends. The propensity of each fuel to establish a flame was correlated to multiple fuel properties and shown to exhibit consistent blending behaviors. No single parameter strongly predicted a fuel’s propensity to establish a flame, while multiple reactivity-based parameters exhibited moderate correlation. A two-stage model of the flame establishment process was developed to interpret and explain these results.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Technical Paper

Trade-Off Analysis and Systematic Optimization of a Heavy-Duty Diesel Hybrid Powertrain

2020-04-14
2020-01-0847
While significant progress has been made in recent years to develop hybrid and battery electric vehicles for passenger car and light-duty applications to meet future fuel economy targets, the application of hybrid powertrains to heavy-duty truck applications has been very limited. The relatively lower energy and power density of batteries in comparison to diesel fuel and the operating profiles of most heavy-duty trucks, combine to make the application of hybrid powertrain for these applications more challenging. The high torque and power requirements of heavy-duty trucks over a long operating range, the majority of which is at constant cruise point, along with a high payback period, complexity, cost, weight and range anxiety, make the hybrid and battery electric solution less attractive than a conventional powertrain.
Technical Paper

Effect of Fuel Type and Tip Deposits on End of Injection Spray Characteristics of Gasoline Direct Injection Fuel Injectors

2019-10-22
2019-01-2600
There has been a great effort expended in identifying causes of Hydro-Carbon (HC) and Particulate Matter (PM) emissions resulting from poor spray preparation, leading to characterization of fueling behavior near nozzle. It has been observed that large droplet size is a primary contributor to HC and PM emission. Imaging technologies have been developed to understand the break-up and consistency of fuel spray. However, there appears to be a lack of studies of the spray characteristics at the End of Injection (EOI), near nozzle, in particular, the effect that tip deposits have on the EOI characteristics. Injector tip deposits are of interest due to their effect on not only fuel spray characteristics, but also their unintended effect on engine out emissions. Using a novel imaging technique to extract near nozzle fuel characteristics at EOI, the impact of tip deposits on Gasoline Direct Injection (GDI) fuel injectors at the EOI is being examined in this work.
X