Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of a Hybrid-Electric Medium-HD Demonstrator Vehicle with a Pent-Roof SI Natural Gas Engine

2024-06-12
2024-37-0026
In response to global climate change, there is a widespread push to reduce carbon emissions in the transportation sector. For the difficult to decarbonize heavy-duty (HD) vehicle sector, lower carbon intensity fuels can offer a low-cost, near-term solution for CO2 reduction. The use of natural gas can provide such an alternative for HD vehicles while the increasing availability of renewable natural gas affords the opportunity for much deeper reductions in net-CO2 emissions. With this in consideration, the US National Renewable Energy Laboratory launched the Natural Gas Vehicle Research and Development Project to stimulate advancements in technology and availability of natural gas vehicles. As part of this program, Southwest Research Institute developed a hybrid-electric medium-HD vehicle (class 6) to demonstrate a substantial CO2 reduction over the baseline diesel vehicle and ultra-low NOx emissions.
Technical Paper

Ducted Fuel Injection: Confirmed Re-entrainment Hypothesis

2024-04-09
2024-01-2885
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work.
Journal Article

Impact of Second NH3 Storage Site on SCR NO x Conversion in an Ultra-Low NO x Aftertreatment System

2023-04-11
2023-01-0367
Typical two-site storage-based SCR plant models in literature consider NH3 stored in the first site to participate in NH3 storage, NOx conversion and second site to only participate in NH3 storage passively. This paper focuses on quantifying the impact of stored NH3 in the second site on the overall NOx conversion for an ultra-low NOx system due to intra site NH3 mass transfer. Accounting for this intra site mass transfer leads to better prediction of SCR out NH3 thus ensuring compliance with NH3 coverage targets and improved dosing characteristics of the controller that is critical to achieving ultra-low NOx standard. The stored NH3 in the second site undergoes mass transfer to the first site during temperature ramps encountered in a transient cycle that leads to increased NOx conversion in conditions where the dosing is switched off. The resultant NH3 coverage fraction prediction is critical in dosing control of SCR.
Technical Paper

DAAAC Protocol for Durability Demonstration of Diesel Aftertreatment Systems: Emissions Performance Validation

2022-08-30
2022-01-1015
Aftertreatment durability demonstration is a required validation exercise for on-road medium and heavy-duty diesel engine certification. The demonstration is meant to validate emissions compliance for the engine and aftertreatment system at full useful life or FUL. Current certification practices allow engine manufacturers to complete partial aging and then extrapolate emissions performance results to FUL. While this process reduces the amount of service accumulation time, it does not consider changes in the aftertreatment deterioration rate. Rather, deterioration is assumed to occur at a linear rate, which may lead to false conclusions relating to emissions compliance. With CARB and EPA’s commitment to the reduction of criteria emissions, emphasis has also been placed on revising the existing certification practices. The updated practices would require engine manufacturers to certify with an aftertreatment system aged to FUL.
Technical Paper

Ducted Fuel Injection: An Experimental Study on Optimal Duct Size

2022-03-29
2022-01-0450
Ducted fuel injection (DFI), a concept that utilizes fuel injection through ducts, was implemented in a constant pressure High Temperature Pressure Vessel at 60 bar ambient pressure, 800-1000 K ambient temperature, and 21 % oxygen. The ducts were 14 mm long and placed 3-4.7 mm from the orifice exit. The duct diameters ranged from 1.6-3.2 mm and had a rounded inlet and a tapered outlet. Diesel fuel was used in single-orifice fuel injectors operating at 250 MPa rail pressure. The objective of this work was to study soot reduction for various combinations of orifice and duct diameters. A complete data set was taken using the 150 μm orifice. A smaller data set was acquired for a 219 μm orifice, showing similar trends. Soot reduction peaked at an optimal duct diameter of 2-2.25 mm, corresponding to an 85-90 % spray area reduction for the 150 μm orifice. Smaller or larger duct diameters were less effective. Duct diameter had a minimal effect on ignition delay.
Technical Paper

Improved Method for Studying MCCI Flame Interactions with an Engine Combustion Chamber

2021-04-06
2021-01-0507
An improved method for studying mixing-controlled compression ignition (MCCI) flame interactions with an engine combustion chamber has been developed. It is implemented in a constant pressure vessel, which contains a portion of a piston and a portion of a cylinder head, where the cylinder head is emulated by a transparent fused silica window. This method allows for vaporizing or combusting fuel jets to be imaged from two orthogonal directions. The piston and cylinder head can be adjusted to emulate in-engine piston positions from top dead center (TDC) to approximately 15 mm away from TDC. The design allows for pistons from engine bore sizes up to approximately 175 mm to be studied, including the ability to simulate injector spray included angles from 120°-180°. In this study, the piston was made as an extruded piston bowl profile, where the length of the extrusion approximated the arc length between two neighboring jets from a 6-hole injector.
Technical Paper

A Data-Driven Approach to Determine the Single Droplet Post-Impingement Pattern on a Dry Wall Using Statistical Machine Learning Classification Methods

2021-04-06
2021-01-0552
The study of spray-wall interaction is of great importance to understand the dynamics during fuel-surface impingement process in modern internal combustion engines. The identification of droplet post-impingement pattern (contact, transition, non-contact) and droplet characteristics can quantitatively provide an estimation of energy transfer for spray-wall interaction, thus further influencing air-fuel mixing and emissions under combusting conditions. Theoretical criteria of single droplet post-impingement pattern on a dry wall have been experimentally and numerically studied by many researchers to quantify the hydrodynamic droplet behaviors. However, apart from model fidelity, another issue is the scalability. A theoretical criterion developed from one case might not be well suited to another scenario. In this paper, a data-driven approach for single droplet-dry wall post-impingement pattern utilizing arithmetical machine learning classification methods is proposed and demonstrated.
Technical Paper

Oil Consumption Pathway Impact on SCR-on-Filter Functional Performance and Lubricant Derived Ash Characteristics

2021-04-06
2021-01-0578
SCR-on-filter, or SCRoF, is an emerging technology for different market segments and vehicle applications. The technology enables simultaneous particulate matter trapping and NOX reduction, and provides thermal management and aftertreatment packaging benefits. However, there is little information detailing the lubricant derived exposure effects on functional SCR performance. A study was conducted to evaluate the impact of various oil consumption pathways on a light duty DOC and SCRoF aftertreatment system. This aftertreatment system was aged utilizing an engine test bench modified to enable increased oil consumption rates via three unique oil consumption pathways. The components were characterized for functional SCR performance, ash morphology, and ash deposition characteristics. This included utilizing techniques, such as SEM / EDS, to evaluate the ash structures and quantify the ash elemental composition.
Technical Paper

Development of an In-Situ Diagnostic to Detect Lithium Plating in Commercial Automotive Battery Cells

2021-04-06
2021-01-0749
Lithium plating refers to the phenomenon where lithium metal is deposited onto the surface of the anode instead of being intercalated into the carbon sites of the graphite. The lithium metal will cover a portion of the surface area of the anode, which blocks intercalation sites and increases charge gradients. Lithium plating most often occurs when charging the battery at low ambient temperatures or at a high current rate, but lithium plating formation has also been linked to solid electrolyte interface (SEI) growth towards the later stages of life. Lithium plating may significantly reduce a battery cell’s performance in terms of charge capacity, and if severe enough, the lithium metal may form a bridge across the separator of the cell, leading to short circuits and potential safety concerns. The internal research performed by Southwest Research Institute explored how to create a battery model to detect the formation of lithium plating in real time.
Journal Article

Supervised Terrain Classification with Adaptive Unsupervised Terrain Assessment

2021-04-06
2021-01-0250
Off road navigation demands ground robots to traverse complex and often changing terrain. Classification and assessment of terrain can improve path planning strategies by reducing travel time and energy consumption. In this paper we introduce a terrain classification and assessment framework that relies on both exteroceptive and proprioceptive sensor modalities. The robot captures an image of the terrain it is about to traverse and records corresponding vibration data during traversal. These images are manually labelled and used to train a support vector machine (SVM) in an offline training phase. Images have been captured under different lighting conditions and across multiple locations to achieve diversity and robustness to the model. Acceleration data is used to calculate statistical features that capture the roughness of the terrain whereas angular velocities are used to calculate roll and pitch angles experienced by the robot.
Technical Paper

Heat Transfer Enhancement through Advanced Casting Technologies

2020-04-14
2020-01-1162
There is growing interest in additive manufacturing technologies for prototype if not serial production of complex internal combustion engine components such as cylinder heads and pistons. In support of this general interest the authors undertook an experimental bench test to evaluate opportunities for cooling jacket improvement through geometries made achievable with additive manufacturing. A bench test rig was constructed using electrical heating elements and careful measurement to quantify the impact of various designs in terms of heat flux rate and convective heat transfer coefficients. Five designs were compared to a baseline - a castable rectangular passage. With each design the heat transfer coefficients and heat flux rates were measured at varying heat inputs, flow rates and pressure drops. Four of the five alternative geometries outperformed the baseline case by significant margins.
Technical Paper

The Utilization of Onboard Sensor Measurements for Estimating Driveline Damping

2019-06-05
2019-01-1529
The proliferation of small silicon micro-chips has led to a large assortment of low-cost transducers for data acquisition. Production vehicles on average exploit more than 60 on board sensors, and that number is projected to increase beyond 200 per vehicle by 2020. Such a large increase in sensors is leading the fourth industrial revolution of connectivity and autonomy. One major downfall to installing many sensors is compromises in their accuracy and processing power due to cost limitations for high volume production. The same common errors in data acquisition such as sampling, quantization, and multiplexing on the CAN bus must be accounted for when utilizing an entire array of vehicle sensors. A huge advantage of onboard sensors is the ability to calculate vehicle parameters during a daily drive cycle to update ECU calibration factors in real time. One such parameter is driveline damping, which changes with gear state and drive mode. A damping value is desired for every gear state.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

The Sensitivity of Transient Response Prediction of a Turbocharged Diesel Engine to Turbine Map Extrapolation

2017-09-04
2017-24-0019
Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
Technical Paper

Caterpillar’s Autonomous Journey - The Argument for Autonomy

2016-09-27
2016-01-8005
Today’s business climate and economy demand new, innovative strategies from the initial kickoff of research and development - to the mining of ore from the earth - to the final inspection of a finished product in a mid-western factory. From startup companies with two employees to the largest companies, the world faces new and challenging requirements every day. The demands from companies, customers, executives, and shareholders continue to drive for higher outputs with more efficient use of personnel and investments. Fortunately, the rate of technology continues to exponentially accelerate, which allows those at the cutting edge of technology to capitalize. Caterpillar has been a pioneer in advanced technology since its inception and has been developing the foundation for autonomy over the past four decades.
Technical Paper

The Impact of RoHS on Electric Vehicles in the Chinese Automotive Market

2016-09-27
2016-01-8124
China has become the world’s largest vehicle market in terms of sales volume. Automobiles sales keep growing in recent years despite the declining economic growth rate. Due to the increasing attention given to the environmental impact, more stringent emission regulations are being drafted to control traditional internal combustion engine emissions. In order to reduce vehicle emissions, environmentally-friendly new-energy vehicles, such as electric vehicles and plug-in hybrid vehicles, are being promoted by government policies. The Chinese government plans to boost sales of new-energy cars to account for about five percent of China’s total vehicle sales. It is well known that more electric and electronic components will be integrated into a vehicle platform during vehicle electrification.
Technical Paper

World Fuels and Modern Fuel Systems - A Path to Coexistence

2015-09-29
2015-01-2818
All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
Technical Paper

The Artificial Intelligence Application Strategy in Powertrain and Machine Control

2015-09-29
2015-01-2860
The application of Artificial Intelligence (AI) in the automotive industry can dramatically reshape the industry. In past decades, many Original Equipment Manufacturers (OEMs) applied neural network and pattern recognition technologies to powertrain calibration, emission prediction and virtual sensor development. The AI application is mostly focused on reducing product development and validation cost. AI technologies in these applications demonstrate certain cost-saving benefits, but are far from disruptive. A disruptive impact can be realized when AI applications finally bring cost-saving benefits directly to end users (e.g., automation of a vehicle or machine operation could dramatically improve the efficiency). However, there is still a gap between current technologies and those that can fully give a vehicle or machine intelligence, including reasoning, knowledge, planning and self-learning.
Technical Paper

Design for 6 Sigma Application in Engine System Integration

2015-09-29
2015-01-2864
With stringent emission regulations, many subsystems that abate engine tailpipe-out emissions become a necessary part for engines. The increased level of complexity poses technical challenges for the quality and reliability for modern engines. Among the spectrum of quality control methodologies, one conventional methodology focuses on every component's quality to ensure that the accumulative deviation is within predetermined limits. This conventional methodology tightens the component tolerance during the manufacturing process and typically results in increased cost. Another conventional methodology that is on the other side of the spectrum focuses on tailoring an engine calibration solution to offset the manufacturing differences. Although the tailored engine calibration solution reduces manufacturing cost for components, it increases the development and validation cost for engines. Given the cost and time constraints, system integration plays an important role in engine development.
Journal Article

Test Protocols for Motorcoach Fire Safety

2015-04-14
2015-01-1381
The Department of Transportation (DOT) National Highway Traffic Safety Administration (NHTSA) awarded a contract to Southwest Research Institute (SwRI) to conduct research and testing in the interest of motorcoach fire safety. The goal of this program was to develop and validate procedures and metrics to evaluate current and future detection, suppression, and exterior fire-hardening technologies that prevent or delay fire penetration into the passenger compartment of a motorcoach - in order to increase passenger evacuation time. The program was initiated with a literature review and characterization of the thermal environment of motorcoach fires and survey of engine compartments, firewalls, and wheel wells of motorcoaches currently in North American service. These characterizations assisted in the development of test methods and identification of the metrics for analysis. Test fixtures were designed and fabricated to simulate a representative engine compartment and wheel well.
X