Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Gradationally Controlled Voltage Inverter for More Electric Aircrafts

2019-09-16
2019-01-1913
The more electric aircraft (MEA) concept has been attracting attention over recent decades to reduce emissions and fuel consumption. In MEAs, many subsystems that previously used hydraulic or pneumatic power have been replaced by electrical systems, and hence the weight of inverters has significant importance. The weight of inverters is largely attributed to passive filters that reduce the derivative of output voltages dv/dt and electromagnetic interference noises caused by common-mode voltages. To reduce the size of passive filters, multilevel inverters with 5 or more voltage steps are preferred. However, classic multilevel inverters have some challenges to achieve these step numbers without using plural dc power supplies that require massive transformers. In this work, a gradationally controlled voltage (GCV) inverter is proposed for MEAs.
Technical Paper

Study of Discharge under Swirl Flow and Combustion Conditions

2018-10-30
2018-32-0006
Combustion at a high EGR (Exhaust Gas Recirculation) ratio is an effective means for improving the fuel efficiency of a gasoline engine. However, there is a problem that the combustion speed decreases. So, it is necessary to intensify the in-cylinder flow to ensure the combustion speed. The spark discharge generated by the ignition coil is strongly influenced by the in-cylinder flow. It forms an arcuate discharge path along the flow, and may blow off and re-discharge under a strong gas flow. The behavior of spark discharge strongly affects the ignition, and consequently affects the stability of combustion. However, the phenomena in a combustion chamber are very complicated because of various environmental conditions, and the discharge and combustion phenomena under a strong gas flow remain unclear. In this research, in order to study these phenomena, discharge and combustion experiments under flow using a constant volume container were performed.
Technical Paper

Development of Autonomous Driving System Using GNSS and High Definition Map

2018-04-03
2018-01-0036
Recently, development of vehicle control system targeting Full Driving Automation (autonomous driving level 5) has advanced. Some applications of autonomous driving systems like the Lane Keeping Assist system (LKA) and Auto Lane Change system (ALC) (autonomous driving level 1-3) have been put on the market. However, the conventional system using information from front camera, it is difficult to operate in some situations. For example the road that no line, large curvature and number of lane increases or decreases. We propose an autonomous driving system using high accuracy vehicle position estimation technology and a high definition map. An LKA system calculates the target steering wheel angle based on both vehicle position information from the Global Navigation Satellite System (GNSS) and the target lane of high the definition map, according to the method of front gaze driver model. Then, the system controls steering the wheel angle by Electric Power Steering (EPS).
Technical Paper

An Online Estimation Method of Stability Factor of a Vehicle for Steering

2009-04-20
2009-01-0045
In this paper, we suggest a novel algorithm to distinguish semi-steady states from various steering patterns and to estimate the stability factor. The algorithm also estimates each stability factor in left and right turns because there could be a case where they differ based on uneven tire wear and so on. The stability factor, which is the turning characteristic of a vehicle, has been treated as constant for most vehicle control systems. However, in fact, it may change in some situations, for example when a vehicle is overloaded. So there is a chance that a driver may be aware of an unusual sensation when vehicle control is designed based on a constant stability factor. We have succeeded in developing an algorithm to estimate the stability factor accurately enough to be able to compensate for it and have confirmed the effectiveness of the algorithm by simulation and vehicle testing as well.
Technical Paper

Simplified Modeling of a Lean NOx Trap Catalyst for an Engine Control System

2005-04-11
2005-01-1115
The lean NOx trap catalyst is a flow through device used in the aftertreatment of lean-burn engine exhaust gas. A simple model capable of simulating catalyst performance would be extremely useful in the development of a viable control system for switching back and forth between lean and rich operation in order to use a lean NOx trap catalyst. Such a model would have to be simple and yield calculated results quickly if it is to serve the ultimate objective of implementing a practical engine control unit for lean-burn engines. The model developed in this work adopts a datamap search approach featuring a simple NOx storage reaction mechanism. More specifically, the model accurately simulates NOx that is not adsorbed under lean conditions (NOx leak) and NOx that is not purified under rich conditions (NOx slip). By projecting the impact of ageing on catalyst performance, the model can also estimate diminished NOx emission capacity and fuel economy.
Technical Paper

A Vehicle State Detection Method Based on Estimated Aligning Torque Using EPS

2005-04-11
2005-01-1265
This paper proposes a vehicle state detection method for improving the stability of vehicles equipped with electric power steering (EPS) and electronic stability control (ESC) systems. ESC is an effective vehicle stability control system that operates within a vehicle's stability limitations. Generally ESC uses a vehicle state signal such as yaw rate. To enhance the ESC function so that it can alleviate understeer, a process that is capable of detecting understeer is required. This concept motivated us to develop a vehicle state detection algorithm based on estimated self-aligning torque using EPS. It is well known that maximum self-aligning torque occurs before maximum cornering force is reached. We have confirmed that the proposed algorithm can detect understeer earlier than conventional means based on vehicle yaw rate.
Technical Paper

Fuel Breakup Near Nozzle Exit of High-Pressure Swirl Injector for Gasoline Direct Injection Engine

2004-03-08
2004-01-0542
Experimental investigations of fuel breakup very close to nozzle of practical high-pressure swirl injector, which is used in gasoline direct injection (GDI) engine, were carried out. In GDI engines, fuel is directly injected into cylinder therefore the spray characteristics and mixture formation are of primary importance. In this research, visualizations of primary spray formation process were demonstrated using a high-speed video camera (maximum speed: 1Mfps) with a long-distance microscope. Initial state and development of the spray were discussed under the different injection pressure condition. During the injection period, the length and thickness of the liquid sheet, which is produced from the nozzle exit, were measured using Ar-ion laser sheet and high-speed camera. Primary spray structure and behavior of liquid sheet, especially surface wave of liquid sheet, at nozzle exit were discussed using obtained images.
Technical Paper

Development of Recognition System for ICC using Sensitive Laser Radar

2000-03-06
2000-01-1306
In JAPAN some ICCs (Intelligent Cruise Control systems) with recognition systems using Laser Radar have been produced since 1995. However these recognition systems have some improvement challenges; 1) Improvement of detectability for less reflective objects, 2) Improvement of identification performance of a vehicle to be tracked in the same lane (a target vehicle), 3) Improvement of detection performance under bad weather condition. We are developing a New Recognition System using sensitive Laser Radar with APD (Avalanche Photo Diode) as a solution for these challenges. In this paper, we will describe our experimental system using sensitive Laser Radar, especially, algorithm for target vehicle recognition and its performance.
Technical Paper

Heat Transport Capability of Axial Grooved Wick Heat Pipes with Asymmetrical Heating

1997-07-01
972330
Nowadays, it becomes more important to predict the heat transport capability of axial grooved wick heat pipes with asymmetrical heating accurately. The authors succeeded in calculation by applying transient analysis. It was found that the heat transport limit is the point where all the grooves began to have dry out region. The prediction of the heat pipe agreed well with the test data with asymmetrical heating under micro-gravity as well as under normal gravity. In addition, it also showed there is no marked difference between symmetrical heating and asymmetrical heating to extent of tested heat pipe design.
Technical Paper

Development of a Scan Laser Radar

1997-02-24
970172
This paper is concerned with a scan laser radar sensor used to measure distance. It s a basic component of a vehicle distance warning system or an intelligent cruise control system. An intelligent cruise control system requires not only the distance to the object, but also the ability to detect movement of the preceding vehicle and the existence of any other nearby obstacle. However conventional radar sensor mainly fixed beam technology and measure only distance. Therefore, it s insufficient for the application to an intelligent cruise control system. Our newly developed scan laser radar transmits an extreme narrow beam and scans both transmission direction and reception direction simultaneously at a high measurement time rate. This scan laser radar can measure the lateral position of objects with high accuracy and good reconstruction level.
Technical Paper

Development of an Effective Air-Injection System with Heated Air for LEV/ULEV

1995-02-01
950411
We have developed an effective secondary air-injection system that reduces harmful substances such as HC and CO. The secondary air in this system is heated to 300°C and injected into the exhaust pipe. Though the temperature of the secondary air is relatively low, it can activate a three way catalyst more rapidly than conventional secondary air injection systems. Thus, in our system (a “Heated-Air-Injection System”) is expected to be very effective in reducing harmful substances in the cold transient phase of the US Federal Test Procedure. For designing the system and analyzing its performance, we developed a simulation model including the design parameters of the system, such as flow rate of heated air, heater power, and so on. Besides these design parameters, the model takes into account of heat transfer from exhaust gas to exhaust pipe, gas-conversion reactions in a three way catalyst, and heat transfer efficiency of the electric heater.
Technical Paper

SOI Type Pressure Sensor for High Temperature Pressure Measurement

1994-03-01
940634
An SOI type pressure sensor has been developed which can measure pressure at high temperature environments above 150°C. SOI stands for Silicon On Insulator. A single-crystalline silicon layer is located on an insulating layer formed on a silicon substrate. The piezoresistors of the SOI type pressure sensor are made from the single-crystalline silicon layer which is isolated from the silicon substrate by the insulating layer. There is no leakage current from the piezoresistors. The SOI structure is made by the laser-recrystallization-method. The properties of the SOI type pressure senor are as good as conventional semiconductor pressure sensors.
Technical Paper

A Robust Cruise Control System Using the Disturbance Observer

1993-03-01
930771
A robust cruise control system using a disturbance observer is proposed. A control design method based on the two-degree-of-freedom (2-DOF) control including a disturbance observer is introduced. The proposed controller provides that: (1) input command responses are not affected by driving condition, such as vehicle speed, and road gradient (2) input command response and disturbance suppression performance can be designed independently (3) choice of an appropriate parameter value in the disturbance observer depending on the throttle opening gives a proper trade-off between the robust performance and the robust stability over a wide driving range. Simulation and experimental results show that the proposed system is robust against both parameter variations and disturbances.
Technical Paper

Study on Stirling Engine Combustor

1992-08-03
929402
In order to achieve NOx reduction by modification of the combustor and/or the combustor arrangement in Stirling engine, the effect of several parameters on NOx emission was investigated experimentally. The combination of appropriate “distance”, swirl intensity and burner throat configuration reduces the NOx emission without EGR(Exhaust Gas Recirculation) or any other countermeasures. The NOx and CO emissions obtained are within the Japanese exhaust gas regulation code (NOx<150ppmV, CO<100ppmV at residual Oxygen 5%) for 20kW class gas boiler. In addition, the effect of the parameters on the distributions of the chemical species, burned gas temperature and ion current in the combustion chamber of the model combustor was studied experimentally to grasp the combustion process.
Technical Paper

Fuel Injection Control Systems that Improve Three Way Catalyst Conversion Efficiency

1991-02-01
910390
A fuel control method to reduce the harmful exhaust gas from SI engines is proposed. As is well known, both the amplitude and the frequency of the limit cycle in a conventional air-fuel ratio control system are determined uniquely by parameters in the system. And this limits our making full use of the oxygen storage effect of TWC. A simple model of TWC reaction revealed the relationship between maximum conversion efficiency and both the amplitude and the frequency in a air fuel control system. It also revealed that TWC conversion efficiency attained to maximum levels when both the amplitude and the frequency of the limit cycle are selected so as to make full use of the oxygen storage effect of TWC. In order to achieve this, it is necessary to vary both the amplitude and the frequency arbitrarily.
Technical Paper

High Reliability High Pressure Sensor for Automotive Use

1987-02-01
870289
A piezoresistive semiconductor pressure sensor that can be measure high pressure upto 3.5 Mpa within ±1% error of FS (Full Scale) has been developed; it is suitable for use in automotive electronic control systems such as suspension, transmission, anti-skid brakes and air conditioners. This pressure sensor has a silicon diaphragm in which piezoresistive elements are diffused and form a wheatstone bridge circuit to newly developed to achieve high accuracy. High resisting pressure of more than 10 MPa (300% of rated pressure) and high sensitivity of more than 100mV/V supply ·3.5 MPa were achieved by the optimum designe of diaphragm shape.
Technical Paper

Active Control for Body Vibration of F.W.D. Car

1986-03-01
860552
A Vehicle Vibration Control System by Active Control has been developed. The experimental results using a 4-cylinder gasoline engine installed in a car showed that at the position of the driver's seat, the acceleration of the vibration was reduced by 16 dB. This system operates stably and at low cost because of having a feedforward system, so many applications can be expected in the near future as methods for vehicle vibration reduction.
Technical Paper

Multi-Function Cassette Player for Vehicle Use

1984-02-01
840158
Compact cassette type tape players for car stereo are among the most popular of car audio equipment. To eliminate manual tape change at the end of each playing, a multi-function cassette player for vehicle use which can replace the cassette automatically has been made for trial. With some original mechanical functions and with two micro computers in the control system, the cassette player is made up into a very small unit. As audio equipment for vehicle use, this player offers a new concept.
X