Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental and Simulation Analysis of Spray and Combustion Characteristics in a Swirl-Chamber Diesel Engine

2022-08-30
2022-01-1049
A swirl-chamber diesel engine has an indirect injection system in which fuel is injected into a pre-chamber called the swirl-chamber that is separated from the main chamber. Indirect fuel injection systems can be directly mechanically controlled by the camshaft, which is cheaper than electronic control. For these reasons, they are used in diverse industrial applications and automobiles. However, optimization of the swirl-chamber shape and performance tests have been mainly experimental, and there has been insufficient verification of the accuracy of simulations. Thus, we have attempted to verify simulations using a rapid compression and expansion machine that can reproduce the combustion in one engine cycle, with a chamber like a swirl chamber in the cylinder head to visualize the behavior of evaporative sprays and the combustion process. In this study, the authors focused on the wall impingement of the fuel spray and took photos of its liquid phase and ignition.
Technical Paper

Studies on Spray and Combustion Characteristics of Throttle Type Nozzle Used in a Swirl-Chamber Diesel Engine

2022-01-09
2022-32-0068
Among industrial engines, vortex chamber diesel engines are mainly used in small engines with output of less than 19 kW, and they employ an indirect injection system in which fuel is injected into a sub-chamber called a vortex chamber. The throttle-type nozzle used in swirl-chamber diesel engines is expected to change its spraying behavior depending on ambient conditions because the pressure fluctuations in the nozzle cause the needle valve to lift, and the injection amount is controlled by the amount of lift of the needle valve. In addition, the dimensions of the vortex chamber of a vortex chamber diesel engine are smaller than the spray development distance, and wall impingement of the spray is expected. In this study, spraying and combustion experiments were conducted using a constant volume chamber to understand the behavior of the spray from a throttle-type nozzle.
Technical Paper

Development of Pre-chamber with Less Combustion Variation with Use of LES

2019-12-19
2019-01-2223
Pre-chamber type gas engines have some merits; one is high efficiency thanks to lean combustion and the other is lower emissions such as CO2 compared to diesel engines. On the other hand, in pre-chamber type gas engines, one factor which frustrates higher efficiency is cycle-to-cycle variation of combustion. One reason why combustion variation occurs is assumed to be variation of fluid in pre-chamber. Such variation of fluid causes variation of equivalence ratio around the spark plug. It leads to unstable ignitability, and as a result, the peaks of in-cylinder pressure vary in different cycles. In order to overcome such technical problem, designing the pre-chamber shape with less cycle-to-cycle variation of combustion is needed. When designing the pre-chamber, CFD (Computational Fluid Dynamics) is a strong tool because detailed fluid history can be captured easily with CFD compared to experiments.
Journal Article

High-Fidelity Transient Thermal Modeling of a Brake Corner

2016-09-18
2016-01-1929
There is an increasing interest in transient thermal simulations of automotive brake systems. This paper presents a high-fidelity CFD tool for modeling complete braking cycles including both the deceleration and acceleration phases. During braking, this model applies the frictional heat at the interface on the contacting rotor and pad surfaces. Based on the conductive heat fluxes within the surrounding parts, the solver divides the frictional heat into energy fluxes entering the solid volumes of the rotor and the pad. The convective heat transfer between the surfaces of solid parts and the cooling airflow is simulated through conjugate heat transfer, and the discrete ordinates model captures the radiative heat exchange between solid surfaces. It is found that modeling the rotor rotation using the sliding mesh approach provides more realistic results than those obtained with the Multiple Reference Frames method.
Journal Article

Analysis of Contamination Protection for Brake Rotor

2016-09-18
2016-01-1930
Contamination protection of brake rotors has been a challenge for the auto industry for a long time. As contamination of a rotor causes corrosion, and that in turn causes many issues like pulsation and excessive wear of rotors and linings, a rotor splash protection shield became a common part for most vehicles. While the rotor splash shield provides contamination protection for the brake rotor, it makes brake cooling performance worse because it blocks air reaching the brake rotor. Therefore, balancing between contamination protection and enabling brake cooling has become a key critical factor when the splash shield is designed. Although the analysis capability of brake cooling performance has become quite reliable, due to lack of technology to predict contamination patterns, the design of the splash protection shield has relied on engineering judgment and/or vehicle tests. Optimization opportunities were restricted by cost and time associated with vehicle tests.
Technical Paper

Transient Evaluation of Two-Stage Turbocharger Configurations using Model Predictive Control

2015-09-01
2015-01-1980
There is a trend towards increasing the degree of engine downsizing due to its potential for reducing fuel consumption and hence lowering CO2 emissions. However, downsizing introduces significant challenges for the engine airpath hardware and control, if driveability is to be maintained at an acceptable level. The transient response of the engine is affected by both the hardware selection and the associated controller. In order to understand the potential performance and limitations of the possible airpath hardware, a mean value model of the engine under consideration can be utilized. One benefit of these models is that they can be used as the basis of a model predictive controller which gives close to optimal performance with minimal tuning effort. In this paper we examine different two-stage series sequential turbocharger arrangements.
Journal Article

Composite Thermal Model for Design of Climate Control System

2014-04-01
2014-01-0687
We propose a composite thermal model of the vehicle passenger compartment that can be used to predict and analyze thermal comfort of the occupants of a vehicle. Physical model is developed using heat flow in and out of the passenger compartment space, comprised of glasses, roof, seats, dashboard, etc. Use of a model under a wide variety of test conditions have shown high sensitivity of compartment air temperature to changes in the outside air temperature, solar heat load, temperature and mass flow of duct outlet air from the climate control system of a vehicle. Use of this model has subsequently reduced empiricism and extensive experimental tests for design and tuning of the automatic climate control system. Simulation of the model allowed several changes to the designs well before the prototype hardware is available.
Technical Paper

A Design Guide for Wet Multiple Plate Clutches on Forklift Truck Transmissions Considering Strength Balance between Friction Material and Mating Plate

2013-04-08
2013-01-0231
Wet multiple plate clutches consist of friction plates, on which a friction material is bonded, and mating plates that are plain metal plates. Since the frequency and the range of load in the field of forklift trucks vary widely and are more severe than those for passenger cars, the wet multiple plate clutches on forklift trucks are often damaged. Damaged clutches that were returned from the field typically had 3 types of symptoms: 1.Only the friction material was damaged, 2.Only the mating plates were deformed, 3.Both symptoms were observed. It was clear that the cause of these symptoms depended on the difference of the operating application and the strength criteria of each part. This showed that a design guide for wet multiple plate clutches considering the strength balance between the two parts according to the work application was required. The relevant flow chart of this design process was proposed.
Journal Article

Signal Processing for Rough Road Detection

2010-04-12
2010-01-0673
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

Effect of Simulated Material Properties and Residual Stresses on High Cycle Fatigue Prediction in a Compacted Graphite Iron Engine Block

2010-04-12
2010-01-0016
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper

Combining DFSS and Multi-body Dynamics for Vehicle Ride Tuning

2007-04-16
2007-01-0586
A methodology involving Design for Six Sigma (DFSS) and Multi-body dynamic simulation is employed to tune a body-on-frame vehicle, for improved ride (shake) performance. The design space is limited to four sets of symmetric body mounts for a vehicle. The stiffness and damping characteristics of the mounts are the control factors in the virtual experiment. Variation of these design parameters from the nominal settings, as well as axle size, tire and wheel combinations, tire pressure, shock damping, and vehicle speed constitute the noise factors. This approach proves to be an excellent predictor of the vehicle behavior, by which much insight as to influence of each parameter on vehicle performance is gained. Ultimately, specific recommendations for the control factor settings are provided. Subsequent hardware builds show excellent agreement with the analytical model and suggested tuning.
Technical Paper

Lead-time Reduction in Stamping CAE and Die Face Development using Massively Parallel Processing in Forming Simulations

2007-04-16
2007-01-1678
Since 1997, General Motors Body Manufacturing Engineering - Die Engineering Services (BME-DES) has been working jointly with our software vendor to develop and implement a parallel version of stamping simulation software for mass production analysis applications. The evolution of this technology and the insight gained through the implementation of DMP/MPP technology as well as performance benchmarks are discussed in this publication.
Technical Paper

The Oxidative Stability of GM's DEXRON®-VI Global Factory Fill ATF

2006-10-16
2006-01-3241
A detailed description of the oxidative stability of GM's DEXRON®-VI Factory Fill Automatic Transmission Fluid (ATF) is provided, which can be integrated into a working algorithm to estimate the end of useful oxidative life of the fluid. As described previously, an algorithm to determine the end of useful life of an automatic transmission fluid exists and is composed of two simultaneous counters, one monitoring bulk oxidation and the other monitoring friction degradation [1]. When either the bulk oxidation model or the friction model reach the specified limit, a signal can be triggered to alert the driver that an ATF change is required. The data presented in this report can be used to develop the bulk oxidation model. The bulk oxidation model is built from a large series of bench oxidation tests. These data can also be used independent of a vehicle to show the relative oxidation resistance of this fluid, at various temperatures, compared to other common lubricants.
Technical Paper

Aeroacoustics of an Automotive A-Pillar Raingutter: A Numerical Study with the Ffowcs-Williams Hawkings Method

2005-05-16
2005-01-2492
A numerical simulation of the flow structure around an idealized automotive A-pillar rain-gutter and the sound radiated from it is reported. The idealized rain-gutter is an infinitesimally thin backward facing elbow mounted on a flat plate. It is kept in a virtual wind-tunnel with rectangular cross-section. The transient flow structure around the rain-gutter is described and time-averaged pressure distribution along the base plate is provided. Time-varying static pressure was recorded on every grid point on the base-plate as well as the rain-gutter surfaces and used to calculate sound pressure signal at a microphone held above the rain-gutter using the Ffowcs-Williams-Hawkings (FWH) integral method was used for calculating sound propagation. Both the transient flow simulation as well as the FWH sound calculation were performed using the commercial CFD code FLUENT6.1.22.
Technical Paper

Multivariate Robust Design

2005-04-11
2005-01-1213
In a complex system, large numbers of design variables and responses are involved in performance analysis. Relationships between design variables and individual responses can be complex, and the outcomes are often competing. In addition, noise from manufacturing processes, environment, and customer misusage causes variation in performance. The proposed method utilizes the two-step optimization process from robust design and performs the optimization on multiple responses using Hotelling's T2 statistic. The application of the T2-statistic allows the use of univariate tools in multiple objective problems. Furthermore, the decomposition of T20 into a location component, T2M and a dispersion component, T2D substitutes a complex multivariate optimization process with the simpler two-step procedure. Finally, using information from the experiment, a multivariate process capability estimates for the design can be made prior to hardware fabrication.
Technical Paper

Numerical and Experimental Study of Turbine Blade Vibration in Variable Geometry Turbochargers

2005-04-11
2005-01-1855
In this study the authors measured 4 blades vibration stress by 4ch FM telemeter for estimating the disk vibration and vibration stress is calculated by unsteady CFD with interaction between nozzle vanes and blades. The authors found 4 blades stress were different and agreed with disk vibration mode calculated by numerical simulation. The 4 blades simultaneous measurement technique is confirmed useful in case of changing disk vibration mode. The blade vibration stress obtained by the numerical analysis shows good agreement with measurement.
Technical Paper

Alliance Principle 1.4: Visual Downangle Criteria for Navigation and Telematics Displays in Vehicles

2005-04-11
2005-01-0425
The Alliance of Automotive Manufacturers (Alliance) has produced a document in which Principle 1.4 gives criteria and methods for calculating downvision angles to navigation and telematics displays in vehicles. This paper describes the details of the criteria and methods for determining compliance. Visual displays placed high in the vehicle instrument panel help drivers to use their peripheral vision to monitor the roadway for major developments, even during brief glances to the display. The Alliance has developed two criteria to define the maximum allowable downward viewing angle for displayed information in North American vehicles. One criterion is for use in two-dimensional Computer Aided Design (CAD) analyses, and one is for use in three-dimensional CAD analyses. Alliance Principle 1.4 is consistent with known driver performance research data, and known facts about the peripheral sensitivity of the human visual system.
X