Refine Your Search

Topic

Author

Search Results

Technical Paper

Interior Noise evaluation of Electric Vehicle: Noise source contribution analysis

2011-05-17
2011-39-7229
Global environment protection, Co2 emission reduction and so on, is an important problem in automotive industry. An Electric Vehicle (EV) production is one of policies. Co2 emission of EV is lower than Internal Combustion Engine (ICE), petrol and diesel engine. On the other hand, customer's needs for the comfort on driving increase year after year. So it's an important factor for new car performance. Generally speaking, it's thought that the noise and vibration performance of EV have the better of ICE performance. However the aerodynamic noise and road noise contribution for interior noise in EV rise in comparison with ICE, and moreover the sound quality change by new noise component of the motor noise. Therefore new sound evaluation method is needed for EV. So this paper demonstrates each noise component contribution in EV by new noise separation technology, and show the comparison result with EV and ICE.
Technical Paper

Powertrain Model Selection and Reduction for Real Time Control Algorithm Design and Verification in Rapid Controller Prototyping Environment

2010-04-12
2010-01-0236
New systems or functionalities have been rapidly introduced for fuel economy improvement. Active vibration suppression has also been introduced. Control algorithm is required to be verified in real time environment to develop controller functionality in a short term. Required frequency domain property concept is proposed for representation of target phenomena with reduced models. It is shown how to select or reduce engine, transmission and vehicle model based on the concept. Engine torque profile which has harmonics of engine rotation is required for engine start, take-off from stand still, noise & vibration suppression and misfire detection for OBD simulation. An engine model which generates torque profile synchronous to crank angle was introduced and modified for real time simulation environment where load changes dynamically. Selected models and control algorithms were modified for real time environment and implemented into two linked universal controllers.
Technical Paper

The Prediction of Refrigeration Cycle Performance with Front End Air Flow CFD Analysis of an Automotive Air Conditioner

2002-03-04
2002-01-0512
The purpose of this paper is to present a prediction method for the refrigerator performance of an automotive air conditioner (A/C). In order to predict the refrigerator performance in arbitrary situations, we consider the thermal equilibrium of the refrigeration cycle through A/C components, as the compressor, the evaporator and the condenser. These components are affected by the thermal property of the refrigerant. Influences of circumstantial flow and temperature field in the engine compartment also are reflected upon, because the cooling performance of the condenser is sensitive to that. In this paper, we try to derive algebraic models for the major components with regard to the thermal equilibrium in the refrigeration cycle. Furthermore, we use a Computational Fluid Dynamics analysis (CFD) for the prediction of cooling airflow temperature in the engine compartment, which is another essential factor in determining the state of the refrigeration cycle.
Technical Paper

Intake-Port Design for Mitsubishi GDI Engine to Realize Distinctive In-Cylinder Flow and High Charge Coefficient

2000-10-16
2000-01-2801
The Mitsubishi GDI engine has adopted a pair of upright intake ports, to induce a rotating in-cylinder flow, reverse tumble, and control air fuel mixing with this flow. The port design of the GDI engine was optimized for achieving a high intensity of the reverse tumble while maintaining a high charge coefficient, by means of modeling of in-cylinder flow and experiment with a steady flow rig. First of all, the ideal design of the upright ports was discussed. It was found that for enhancing the reverse tumble, it is more effective to arrange a pair of the ports parallel, than to arrange them convergent. The parallel arrangement leads to the smoother flows passing through the intake sides of the intake valves, and then descending on the cylinder liner, that is turning toward the rotation direction of the reverse tumble, because of less impingement of the flows through a pair of the valves.
Technical Paper

Booming noise analysis of passenger car using integrated approach of CAT/CAE

2000-06-12
2000-05-0293
The need of lightweight vehicle design is motivated by the recent global trend of less fuel consumption and lower emission in vehicle. However in NVH development of vehicle, it becomes more difficult for the lightweight vehicle to reach low vibro-acoustic sensitivity than, for the heavy weight one to do so. Inthis environment, this paper describes about the practical finite element (FE) modeling of vehicle structure and acoustics, in order to predict "boom" response to powertrain excitation. The FE modeling process through validation and updating with experimental mode makes, the accumulation of considerable expertise for improving prediction accuracy, possible. FE analysis based on this modeling process is so useful for predicting "boom" levels up to 200 Hz. Using the result of FE analysis, structural optimization is executed in order to improve "boom" level of 80 Hz.
Technical Paper

New Mitsubishi L4 5-Liter DI Diesel Engine

1998-11-16
982800
The 4M5 series of four-cylinder, in-line, direct-injection diesel engines has been released by Mitsubishi Motors Corporation for light and medium-duty trucks and buses. Featuring an updated structure and reflecting the employment of state-of-the-art technology in the design of every component, the new engine series offers high reliability and compact dimensions. Moreover, the new series well meets contemporary demands for high performance, low noise, and clean combustion.
Technical Paper

Common Rail Fuel Injection System for Improvement of Engine Performance on Heavy Duty Diesel Engine

1998-02-23
980806
With the intention of improving engine performance and emissions, the authors examined the influence of the method of initial fuel injection quantity reduction and of the injector configuration of a common rail fuel injection system on engine performance and exhaust emissions. Results showed that decreasing the nozzle hole diameter was an effective way to reduce the initial injection quantity without increasing black smoke. Compared to a three-way type injector, it was found that a two-way type injector can greatly reduce the amount of fuel leakage from the electromagnetic injector control valve and fuel consumption could be further improved by reduction of the driving loss. Furthermore, the increase of driving losses with higher injection pressure was small, and as a result, higher pressure injection was possible.
Technical Paper

Application to Body Parts of High-Strength Steel Sheet Containing Large Volume Fraction of Retained Austenite

1998-02-23
980954
Several different steel sheets were tested for energy absorption, using hat square columns and dynamic crash testing. Results indicate that steel sheets containing large volume fraction of retained austenite have relatively high energy absorption. The relationship between retained austenite and energy absorption was analyzed. These special steel sheets have already been successfully used for production body parts, such a front-side-member, without difficulties arising in volume production.
Technical Paper

Development of Austempered Ductile Iron Timing Gears

1997-11-17
973253
Austempered ductile iron (ADI) is a material having excellent mechanical properties and damping capacity. However practical mass production of ADI gears has not been possible due to ADI's poor machinability and distortion during the austempering heat treatment. With a new process method of carrying out hobbing before austempering when the material is in its soft condition, then austempering it and lastly, conducting the shave finishing process, we have diminished the above defects and developed practical ADI gears. These new gears generate less noise than ordinary nitrocarburized steel gears and are superior in pitting resistance.
Technical Paper

Analysis of Vehicle Wind Throb Using CFD and Flow Visualization

1997-02-24
970407
Passenger cars with sunroofs sometimes experience a low frequency pulsation noise called “wind throb” when traveling with the roof open. This “wind throb” should be suppressed because it is an unpleasant noise which can adversely affect the acoustic environment inside a car. In this paper, 3-dimensional numerical flow analysis is applied around a car body to investigate the wind throb phenomenon. The computational scheme and the modeling method of the car body is first described. A flow visualization test in a water tunnel was completed for the simple car body shape to compare against the numerical procedure. The numerical and the visualized results compared well and the numerical simulation method employed was considered to be a reliable tool to analyze the wind throb phenomenon. Calculated results of pressure and vorticity distribution in the sunroof opening were analyzed with the spectrum of pressure fluctuation at the sunroof opening with and without a deflector.
Technical Paper

Development of Damping SMC and Its Application as Material for a Rockercover

1996-02-01
960146
When replacing a metal engine part with plastic, it is necessary to regard vibration damping as one of the important factors in terms of noise reduction as well as strength and heat resistance as being characteristics of the material. Plastics are far better for vibration damping than steel or aluminum, but this property is reduced by the addition of glassfiber-reinforced or high heat-resisting resins. We have taken notice of SMC (Sheet Molding Compound) which has the excellent strength and heat resistance properties and studied it in order to increase its vibration damping property. Since organic polymers show the peak value for vibration damping performance in the vicinity of the glass transition temperature (Tg), we studied a method to shift the Tg near the operating temperature region in order to improve the vibration damping property.
Technical Paper

A Method of Predicting Dent Resistance of Automobile Body Panels

1995-02-01
950574
Optimizing the design of automobile outer panels for weight reductions requires a consideration of stiffness and dent resistance. This paper presents a finite element analysis method for predicting the dent resistance of automobile body panels. The method is based on elastoplasticity analysis and nonlinear contact analysis. The analysis shows that dent resistance is greatly influenced not only by the stress-strain curve of the formed panel but also by the residual stress in the panel. An increase in yield stress improves dent resistance. The computed results obtained with this method compare favorably with experimental data, thereby validating this approach.
Technical Paper

Application of Common Rail Fuel Injection System to a Heavy Duty Diesel Engine

1994-11-01
942294
In the diesel engine industry, the growing trends are toward wider use of electronically controlled high pressure fuel injection equipment to provide better engine performance, while conforming to the stringent exhaust emission standards. Although there have been some recent announcements of a diesel engine that applies an electronically controlled common rail type fuel injection system, there is little literature published about any attempt to reduce both exhaust emissions and noise and to improve engine performance by varying injection pressure and injection timing independently and introducing pilot injection in combination. This paper describes the details of a study made on the parameters associated with injection timing, injection pressure and pilot injection and the procedures for their optimization, with an electronically controlled common rail type fuel injection system installed in an in-line 6-cylinder 6.9 liter turbocharged and intercooled DI diesel engine.
Technical Paper

Effects of Shot Peening and Grinding on Gear Strength

1994-03-01
940729
In recent year, higher strength for truck and bus transmission gear has become necessary. For the transmission gears, carburized gears have generally been used. We have examined the effects of shot peening and grinding using a CBN grindstone on the pitting strength and the bending fatigue strength of a carburized gear, and further evaluated a material which reduces the structual anomalies produced during carburization. As a result, it has been found that shot peening or CBN grinding is more effective for improving both pitting strength and bending fatigue strength than improving the material composition. Therefore, it is evident that residual compressive stress caused by shot peening or CBN grinding suppresses the propagation of cracks.
Technical Paper

Reduction of Cooling Fan Noise Caused by Crankshaft Torsional Vibration

1993-05-01
931334
Improvements of interior and exterior noise are important targets in vehicle engineering. There are many reports concerning the reduction of radiator cooling fan noise. But, most of those reports are associated with studies of air flow noise. A radiator cooling fan connected to a crankshaft occasionally radiates structure-borne noise in addition to air flow noise. This structure-borne noise is caused by fan blade vibration excited by torsional vibration of a crankshaft. In this paper, we surveyed the mechanism of the structure-borne noise and discussed some methods for the noise reduction. And, as a result, we developed one of the noise reduction technique aiming at isolation of crankshaft vibration by modifying viscosity of the oil in a fan clutch.
Technical Paper

Development of a New Torsional Rubber Damper for Diesel Engines

1993-05-01
931308
It is well-known that double-mass torsional rubber dampers which have two masses and springs in parallel are effective for controlling torsional vibration characteristics over a wide range of engine speed. On the occasion of reliability estimation of the rubber dampers, it is important to consider generation of heat in the rubber due to torsional vibration. By predicting generation of heat at the designing stage, optimum design of the torsional rubber dampers can be achieved. By development and application of this prediction method, a new type double-mass damper was developed. It provided higher vibration control characteristics and reliability than conventional viscous dampers, and also it provided advantages in terms of noise, productivity and weight.
Technical Paper

Sound Quality Evaluation of Passenger Vehicle Interior Noise

1993-05-01
931347
Objective measures to evaluate sound quality are important for proper sound design and noise improvement. In this paper, the objective measures of interior noise of passenger vehicle, which is operated at constant engine revolution speed, are discussed. Subjective evaluation test of the interior noise was done using the semantic differential method. By applying factor analysts to the subjective evaluation scores, three important factors of the sound quality were extracted, i.e. comfortable, powerful and booming factors. Each factor was correlated with various physical values, for example octave band levels. Furthermore, the data is analyzed by multiple linear regression analysis with stepwise variable selection, of the each factor scores against the various physical values. Finally, an objective measure to evaluate each of these factors was conducted using the combination of simple physical values. Each of these measures was good correlation with each of the subjective evaluations.
Technical Paper

Heat Flow on Disc Brakes

1993-04-01
931084
This paper describes an experimental analysis of frictional heat generated between the pads and rotors of disc brakes, to determine the paths and amounts of heat flow. The brakes were applied repeatedly at a constant initial speed, deceleration and interval until brake temperature became saturated. Under these conditions we measured an unsteady temperature distribution state during a single application of the brakes, and also a saturated (quasi-stationary) temperature distribution during repeated braking. Heat flow was studied in six paths: heat conduction to the pad; heat convection to the air from the friction areas of the inner and outer disc, from the ventilating parts and from the tube section of the rotor; and heat conduction to the rotor flange section.
Technical Paper

Prediction Method of Cooling System Performance

1993-03-01
930146
This paper describes a method of predicting cooling performance in order to obtain the optimum design of the cooling system and front-end shape in the early stage of car development. This method consists of four calculation parts: thermal load on the cooling system, air flow through the engine compartment, heat dissipation by the heat exchangers and temperature distribution within the cooling system. It outputs the coolant, engine oil, automatic transmission fluid (A.T.F.) and charge air temperatures in exchange for the input of several car, power plant, drive train, exterior shape and cooling system specifications. For the calculations, in addition to theoretical formulas, several experimental formulas are introduced. This method verification is shown by presenting a few test cases for the respective calculation parts and the final solution.
Technical Paper

Influence of Powertrain Torsional Rigidity on NVH of 6x4 Trucks

1992-11-01
922482
Torsional vibration of a truck's powertrain system is due to the exciting force generated by the angular velocity fluctuation originating from the setting angle of the universal joint of the propeller shaft, which can cause such problems as rattling noise, booming noise, etc.. This paper will clarify the difference between a 6x4 truck and a 6x2 truck in the torsional vibration characteristics from the experimental results. This is accomplished by computation with a simple torsional vibration model of the powertrain system and investigating the contribution of torsional rigidities of the powertrain system's various components by a parameter study. As a result it has been clarified that the torsional rigidity of the through shaft for transmitting power to the two rear axles has a great influence on Noise, Vibration and Harshness of 6x4 trucks.
X