Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Investigations on the Effects of Chemical Treatment on Mechanical Properties of Thespesia Lampas Fiber Reinforced Composites for Automobile Applications

2023-11-10
2023-28-0121
In today's world, there is an increasing emphasis on the responsible use of fiber reinforced materials in the automobile applications, construction of buildings, machinery, and appliances as these materials are effectively reused, recycled, or disposed with minimum impact on the environment. As such, it has become mandatory to incorporate sustainable, environmental friendly and green concepts in the development of new materials and processes. The primary objective of this study is to manufacture composites using fibers obtained from Thespesia Lampas plants, which are known for their soft, long fibers that are commonly used in various domestic products. The composites are made by combining these fibers with a general purpose polyisocyanurate resin, and their potential applications in both domestic and commercial products are explored. To evaluate the properties of these composites, tests are conducted for tensile strength, flexure, and water absorption.
Technical Paper

Machinability Investigations on Ti-6Al-4V (Grade 5) Wire Electrical Discharge Machining Using Taguchi Method for Auto Parts

2023-11-10
2023-28-0144
Titanium alloys are deemed as one amongst the light weight material most preferably adopted in numerous engineering applications due to its exceptional features such as corrosive resistance and thermal strength. These alloys are predominantly used in components of IC engines such as valves and springs, connecting rods. Especially Ti-Grade 5 adopted in aircraft, automobile parts ski plates and bicycles. The preliminary goal of this present research is to optimize the machining variables for Wire Electrical Discharge Machining (WEDM) of Ti-6Al-4V (Grade 5) to accomplish improved rate of material removal and surface finish. Taguchi’s design and analysis method was chosen for devising and examining the experiments by considering input factors (pulse duration and current). An L9 OA was utilized for experimentation to analyze the various output variables, such as surface finish and material removal rate, using the response analysis of Taguchi.
Technical Paper

Application of Taguchi Approach on Wire Electrical Discharge Machining of SS304 for Automotive Applications

2023-11-10
2023-28-0151
SS304 is a type of stainless steel that is well-known for its high ductility and resistance to corrosion; as a result, it is typically utilized in a variety of applications, such as the exhaust systems of automobiles and the springs that are used in seatbelts. Because of its qualities, it will eventually be employed in a variety of body parts, including fuel tanks and chassis, among other things. Due to its properties, SS304 is known to be incredibly difficult to machine using conventional methods. Through a wire electrical discharge machining process, it is easier to cut complex materials with high surface finishes. In this study, a study was conducted on the WEDM process parameters of SS304 to optimize its machining process. The study was carried out using the DoE approach, which involved planning the various experiments. The parameters of the process, such as the pulse on time, peak current, and off time, were analyzed to determine their performance.
Technical Paper

Development of Artificial Neural Network Model for CNC Drilling of AA6061 with Coated Textured Tool for Auto Parts

2023-11-10
2023-28-0079
With the progress of manufacturing industries being critical for economic development, there is a significant requirement to explore and scrutinize advanced materials, particularly alloy materials, to facilitate the efficient utilization of modern technologies. Lightweight and high-strength materials, such as aluminium alloys, are extensively suggested for various applications requiring strength and corrosion resistance, including but not limited to automotive, marine, and high-temperature applications. As a result, there is a significant necessity to examine and evaluate these materials to promote their effective use in the manufacturing sectors. This research paper presents the development of an Artificial Neural Network (ANN) model for Computer Numerical Control (CNC) drilling of AA6061 aluminium alloy with a coated textured tool. The primary aim of the study is to optimize the drilling process and enhance the machinability of the material.
Technical Paper

Development of Adaptive Neuro Fuzzy Inference System Model for CNC Milling of AA5052 Alloy with Minimum Quantity Lubrication by Natural Cutting Fluid

2022-12-23
2022-28-0511
In view of the improvements in manufacturing sectors, which are an important component of any economy’s growth, there is a significant need for new and advanced materials, particularly alloy materials need to be analysed and investigated so that new technologies may be effectively utilized. Materials with low weight and high strength, such as aluminium alloys, are recommended for a variety of applications that require both strength and corrosion resistance, such as marine applications and high-temperature applications. Aluminium alloy Al 5052, a nonferrous material with outstanding properties is an Al-Mg alloy with high thermal conductivity and corrosion products that are non-toxic. Minimum Quantity Lubrication (MQL) is a cost-effective and environmentally friendly method of lubrication employed in a variety of machining processes. The investigation of CNC milling of AA5052 alloy with standard Tungsten Carbide (WC) tool inserts with MQL settings are detailed in this paper.
X