Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Pyrolysis of Mixed Solid Food, Paper, and Packaging Wastes

2008-06-29
2008-01-2050
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid and/or gaseous products. The pyrolysis processing of pure and mixed solid waste streams has been under investigation for several decades for terrestrial use and a few commercial units have been built for niche applications. Pyrolysis has more recently been considered for the processing of mixed solid wastes in space. While pyrolysis units can easily handle mixed solid waste streams, the dependence of the pyrolysis product distribution on the component composition is not well known. It is often assumed that the waste components (e.g., food, paper, plastic) behave independently, but this is a generalization that can usually only be applied to the overall weight loss and not always to the yields of individual gas species.
Technical Paper

Waste Compaction Technology Development for Human Space Exploration Missions

2007-07-09
2007-01-3265
Waste management is a critical component of life support systems for manned space exploration. Human occupied spacecraft and extraterrestrial habitats must be able to effectively manage the waste generated throughout the entire mission duration. The requirements for waste systems may vary according to specific mission scenarios but all waste management operations must allow for the effective collection, containment, processing, and storage of unwanted materials. NASA's Crew Exploration Vehicle usually referred to as the CEV, will have limited volume for equipment and crew. Technologies that reduce waste storage volume free up valuable space for other equipment. Waste storage volume is a major driver for the Orion waste compactor design. Current efforts at NASA Ames Research Center involve the development of two different prototype compactors designed to minimize trash storage space.
Technical Paper

Lyophilization for Water Recovery III, System Design

2005-07-11
2005-01-3084
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents results of functional and performance tests.
Technical Paper

An Evaluation of a Prototype Dry Pyrolysis System for Destruction of Solid Wastes

2004-07-19
2004-01-2379
Pyrolysis is a technology that can be used on future space missions to convert wastes to an inert char, water, and gases. The gases can be easily vented overboard on near term missions. For far term missions the gases could be directed to a combustor or recycled. The conversion to char and gases as well as the absence of a need for resupply materials are advantages of pyrolysis. A major disadvantage of pyrolysis is that it can produce tars that are difficult to handle and can cause plugging of the processing hardware. By controlling the heating rate of primary pyrolysis, the secondary (cracking) bed temperature, and residence time, it is possible that tar formation can be minimized for most biomass materials. This paper describes an experimental evaluation of two versions of pyrolysis reactors that were delivered to the NASA Ames Research Center (ARC) as the end products of a Phase II and a Phase III Small Business Innovation Research (SBIR) project.
Technical Paper

Lyophilization for Water Recovery II, Model Validation

2004-07-19
2004-01-2377
This paper presents results of research on a solid waste dryer, based of the process of lyophilization, which recovers water and stabilizes solid waste. A lyophilizer has been developed and tested that uses thermoelectric heat pumps (TECs) to recycle heat during drying. The properties of TECs facilitate direct measurement of heat flow rates, and heat flow data are used to evaluate a heat and mass transfer model of the thermoelectric lyophilizer. Data are consistent with the theoretical model in most respects. Practical problems such as insulation and vacuum maintenance are minor in this system. However, the model’s assumption of a uniformly retreating ice layer during drying is valid only for the first 30% of water removed. Beyond this point, a shrinking core or lens model is more appropriate. Heat transfer to the shrinking core surrounded by dried material is slow.
Technical Paper

Lyophilization for Water Recovery

2001-07-09
2001-01-2348
An energy-efficient lyophilization technique is being developed to recover water from highly contaminated spacecraft waste streams. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain water. To operate in microgravity, and to minimize power consumption, thermoelectric heat pumps can be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer is described and used to generate energy use and processing rate estimates.
Technical Paper

Water Reclamation Technology Development for Future Long Range Missions

1992-07-01
921351
This paper covers the development of computer simulation models of the Vapor Compression Distillation (VCD) process, the Super Critical Water Oxidation (SCWO) process, and two versions of a Vapor Phase Catalytic Ammonia Reduction (VPCAR) process. These process level models have combined into two Integrated Water Reclamation Systems (IWRS). Results from these integrated models, in conjunction with other data sources, have been used to develop a preliminary comparison of the two systems. Also discussed in this paper is the development of a Vapor Phase Catalytic Ammonia Reduction teststand and the development of a new urine analog for use with the teststand and computer models.
X