Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Integration and Synthesis in Astrobiology

2000-07-10
2000-01-2341
Astrobiology is one of the most highly integrative scientific efforts ever undertaken, relying on the synthesis of sciences from astronomy to zoology and geology to genomics to discover the thread of life in the universe. These sciences must be further integrated with the technological revolutions in biotechnology, microminiaturization and information technology to realize the vast potential offered by NASA's mission suites. This paper discusses development of the Astrobiology Roadmap and novel management approaches which attempt to bring in the best scientific and technical talent available to bear on Astrobiology's goals, while simultaneously minimizing the overhead and time to flight for Astrobiology payloads.
Technical Paper

Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

2000-07-10
2000-01-2236
NASA’s planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceived and investigated by NASA’s Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material. The present paper presents the results of a series of proof-of-concept tests intended to characterize the thermal performance of STI over a range of operational conditions representative of those which will be encountered in use.
Technical Paper

Direct-Interface Fusible Heat Sink Performance Tests

1994-06-01
941384
A high fidelity, direct-interface, fusible heat sink for cooling astronauts during extravehicular activity was constructed and tested. The design includes special connectors that allow the coolant loop to be directly connected to the fusible material, in this case water. Aspects tested were start-up characteristics, cooling rate, and performance during simulated heat loads. A simplified math model was used to predict the effect of increasing the effective thermal conductivity on heat sink freezing rate. An experiment was designed to measure the effective thermal conductivity of a water/Aluminum foam system, and full gravity tests were conducted to compare the freezing rates of water and water/foam systems. This paper discusses the results of these efforts.
X