Refine Your Search

Topic

Author

Search Results

Technical Paper

Roughness Parameter Optimization of the McClain Model in GlennICE

2023-06-15
2023-01-1468
Aircraft icing remains a significant threat to aviation safety. Software that predicts the impingement and ice accretion on full aircraft geometries and aircraft components are in demand and NASA Glenn is committed to produce software that meets this need. One of the key parameters affecting an accurate prediction of iced geometry is the effect of ice roughness on the heat transfer coefficient. While many efforts have been made to implement the roughness in the flow solver, this report takes a correlation for roughness height distribution that is based on experimental measurements and demonstrates how to relate those measurements to an augmentation to the heat transfer coefficient provided by the flow solution. The outcome of this effort was the callibration of defaults for user supplied parameters to this correlation through comparison with 95 large glaze conditions from experiment by adjusting user-supplied parameters in the roughness augmentation equation.
Technical Paper

The Influence of SLD Drop Size Distributions on Ice Accretion in the NASA Icing Research Tunnel

2019-06-10
2019-01-2022
An ice shape database has been created to document ice accretions on a 21-inch chord NACA0012 model and a 72-inch chord NACA 23012 airfoil model resulting from an exposure to a Supercooled Large Drop (SLD) icing cloud with a bimodal drop size distribution. The ice shapes created were documented with photographs, laser scanned surface measurements over a section of the model span, and measurement of the ice mass over the same section of each accretion. The icing conditions used in the test matrix were based upon previously used conditions on the same models but with an alternate approach to evaluation of drop distribution effects. Ice shapes resulting from the bimodal distribution as well as from equivalent monomodal drop size distributions were obtained and compared.
Technical Paper

Summary of the High Ice Water Content (HIWC) RADAR Flight Campaigns

2019-06-10
2019-01-2027
NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding of high ice water content (HIWC) and develop onboard weather radar processing techniques to detect regions of HIWC ahead of an aircraft to enable tactical avoidance of the potentially hazardous conditions. Both HIWC RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory equipped with a Honeywell RDR-4000 weather radar and in-situ microphysical instruments to characterize the ice crystal clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results. The first campaign was conducted in August 2015 with a base of operations in Ft. Lauderdale, Florida.
Technical Paper

Radar Detection of High Concentrations of Ice Particles - Methodology and Preliminary Flight Test Results

2019-06-10
2019-01-2028
High Ice Water Content (HIWC) has been identified as a primary causal factor in numerous engine events over the past two decades. Previous attempts to develop a remote detection process utilizing modern commercial radars have failed to produce reliable results. This paper discusses the reasons for previous failures and describes a new technique that has shown very encouraging accuracy and range performance without the need for any modifications to industry’s current radar design(s). The performance of this new process was evaluated during the joint NASA/FAA HIWC RADAR II Flight Campaign in August of 2018. Results from that evaluation are discussed, along with the potential for commercial application, and development of minimum operational performance standards for future radar products.
Technical Paper

Experimental Aerodynamic Simulation of Glaze Ice Accretion on a Swept Wing

2019-06-10
2019-01-1987
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing was carried out for 8.9% and 13.3% scale semispan wing models based upon the Common Research Model airplane configuration. Various levels of geometric fidelity of an artificial ice shape representing a realistic glaze-ice accretion on a swept wing were investigated. The highest fidelity artificial ice shape reproduced all of the three-dimensional features associated with the glaze ice accretion. The lowest fidelity artificial ice shapes were simple, spanwise-varying horn ice geometries intended to represent the maximum ice thickness on the wing upper surface.
Journal Article

Noise Control Capability of Structurally Integrated Resonator Arrays in a Foam-Treated Cylinder

2017-06-05
2017-01-1765
Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
Journal Article

Development of a Coupled Air and Particle Thermal Model for Engine Icing Test Facilities

2015-06-15
2015-01-2155
This paper describes a numerical model that simulates the thermal interaction between ice particles, water droplets, and the flowing air applicable during icing wind tunnel tests where there is significant phase-change of the cloud. It has been previously observed that test conditions, most notably temperature and humidity, change when the icing cloud is activated. It is hypothesized that the ice particles and water droplets thermally interact with the flowing air causing the air temperature and humidity to change by the time it reaches the test section. Unlike previous models where the air and particles are uncoupled, this model attempts to explain the observed changes in test conditions by coupling the conservation of mass and energy equations. The model is compared to measurements taken during wind tunnel tests simulating ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines.
Technical Paper

Recent Advances in the LEWICE Icing Model

2015-06-15
2015-01-2094
This paper will describe two recent modifications to the LEWICE software. The version described is under development and not ready for release. First, a capability for modeling ice crystals and mixed phase icing has been modified based on recent experimental data. Modifications have been made to the ice particle bouncing and erosion model. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to ice crystal ice accretions performed in the NRC Research Altitude Test Facility (RATFac). Second, modifications were made to the runback model based on data and observations from thermal scaling tests performed in the NRC Altitude Icing Tunnel. The runback model was modified to match film models used in the open literature. An empirical water shedding was also implemented. Comparisons were made to thermal deicing data taken at the NRC Altitude Icing Tunnel.
Technical Paper

Ice Accretion Measurements on an Airfoil and Wedge in Mixed-Phase Conditions

2015-06-15
2015-01-2116
This paper presents measurements of ice accretion shape and surface temperature from ice-crystal icing experiments conducted jointly by the National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada. The data comes from experiments performed at NRC's Research Altitude Test Facility (RATFac) in 2012. The measurements are intended to help develop models of the ice-crystal icing phenomenon associated with engine ice-crystal icing. Ice accretion tests were conducted using two different airfoil models (a NACA 0012 and wedge) at different velocities, temperatures, and pressures although only a limited set of permutations were tested. The wedge airfoil had several tests during which its surface was actively cooled. The ice accretion measurements included leading-edge thickness for both airfoils. The wedge and one case from the NACA 0012 model also included 2D cross-section profile shapes.
Technical Paper

Ice Particle Analysis of the Honeywell ALF502 Engine Booster

2015-06-15
2015-01-2131
A flow and ice particle trajectory analysis was performed for the booster of the Honeywell ALF502 engine. The analysis focused on two closely related conditions one of which produced an icing event and another which did not during testing of the ALF502 engine in the Propulsion Systems Lab (PSL) at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.63 ice accretion software. The inflow conditions for the two conditions were similar with the main differences being that the condition that produced the icing event was 6.8 K colder than the non-icing event case and the inflow ice water content (IWC) for the non-icing event case was 50% less than for the icing event case.
Technical Paper

Performance Modeling of Honeywell Turbofan Engine Tested with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

2015-06-15
2015-01-2133
The Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center, has been used to test a full scale Honeywell turbofan engine at simulated altitude operating conditions. The PSL has spray bars to create a continuous cloud of fully glaciated ice crystals. The tests successfully duplicated the icing events that were experienced by the Honeywell engine (ALF502R-5) during flight through ice crystal clouds. After the ice cloud was turned on key engine performance parameters such as the fan speed, air flow rate, fuel flow rate, and compressor exit pressure and temperature responded immediately to the ingestion of the ice crystals. For some of the test points, these performance parameters remained unchanged from the initial response to the ice crystals, while during other test points the engine performance began to deteriorate to the point where an uncommanded loss of thrust control (engine rollback) was judged by the test engineers to have been imminent.
Technical Paper

Fundamental Ice Crystal Accretion Physics Studies

2011-06-13
2011-38-0018
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations.
Technical Paper

Naturally Aspirating Isokinetic Total Water Content Probe: Wind Tunnel Test Results and Design Modifications

2011-06-13
2011-38-0036
A total water content probe for flight- and ground-based testing is being completed. During operation across a range of altitudes and water content conditions, the probe has to maintain isokinetic flow, vaporize the solid and liquid water content and maintain the inlet ice free to ensure isokinetic flow. Despite achieving isokinetic operation, the collection efficiency of particles less than 30 μm can be less than 100%. A correlation of collection efficiency to Stokes number has been determined to correct the results for this effect. In preparation for flight testing an integrated data acquisition, control and power supply unit was developed and successfully tested. Results from testing at the NASA Glenn Icing Research Tunnel are presented covering both ice crystals and super-cooled liquid conditions. The results correspond well to previously published work and problems encountered during previous testing of this probe are shown to have been resolved.
Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

Flow Field Predictions of the NASA Glenn Icing Research Tunnel

2011-06-13
2011-38-0074
To improve the understanding of the flow field within the NASA Glenn Icing Research Tunnel (IRT) with three different tunnel configurations, three-dimensional Reynold-Average Navier-Stokes (RANS) simulations were performed using the Menter-SST turbulence model. The 2000 tunnel configuration was simulated in the settling chamber from the spray bars to the test section. The 2009 tunnel configuration was simulated with vertical struts and multiple Mod-1 air jets implemented using embedded velocity profiles. The 2012 tunnel configuration has a new heat exchanger which was modeled starting from the exit of the heat exchanger to the test section. The results described herein focus on the flow turbulence since this defines test section performance but also is used to improve uniformity of the Liquid Water Content (LWC).
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

Numerical Uncertainty Quantification for Radiation Analysis Tools

2007-07-09
2007-01-3110
Recently a new emphasis has been placed on engineering applications of space radiation analyses and thus a systematic effort of Verification, Validation and Uncertainty Quantification (VV&UQ) of the tools commonly used for radiation analysis for vehicle design and mission planning has begun. There are two sources of uncertainty in geometric discretization addressed in this paper that need to be quantified in order to understand the total uncertainty in estimating space radiation exposures. One source of uncertainty is in ray tracing, as the number of rays increase the associated uncertainty decreases, but the computational expense increases. Thus, a cost benefit analysis optimizing computational time versus uncertainty is needed and is addressed in this paper. The second source of uncertainty results from the interpolation over the dose vs. depth curves that is needed to determine the radiation exposure.
Technical Paper

Next Generation NASA GA Advanced Concept

2006-08-30
2006-01-2430
Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.
Technical Paper

NASA Personal Air Transportation Technologies

2006-08-30
2006-01-2413
The ability to personalize air travel through the use of an on-demand, highly distributed air transportation system will provide the degree of freedom and control that Americans enjoy in other aspects of their life. This new capability, of traveling when, where, and how we want with greatly enhanced mobility, accessibility, and speed requires vehicle and airspace technologies to provide the equivalent of an internet PC ubiquity, to an air transportation system that now exists as a centralized hub and spoke mainframe NASA airspace related research in this new category of aviation has been conducted through the Small Aircraft Transportation (SATS) project, while the vehicle technology efforts have been conducted in the Personal Air Vehicle sector of the Vehicle Systems Program.
Technical Paper

The Third Wave of Aeronautics: On-Demand Mobility

2006-08-30
2006-01-2429
Aviation has experienced one hundred years of dynamic growth and change, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. The first fifty years of aviation was a very chaotic, rapid evolutionary process involving disruptive technologies that required frequent adaptation. The second fifty years produced a stable evolutionary optimization of services based on achieving an objective function of decreased costs. In the third wave of aeronautics over the next fifty years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient, and environmentally fare and friendly system.
X