Refine Your Search

Topic

Author

Search Results

Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

First Human Testing of the Orion Atmosphere Revitalization Technology

2009-07-12
2009-01-2456
A system of amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and is baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology, which was performed in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to use real human loads in the spring of 2008.
Technical Paper

A Test Plan for Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

2008-06-29
2008-01-2113
The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source.
Technical Paper

Further Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2008-06-29
2008-01-2101
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft, but additional data was needed on the operational characteristics of the package in a simulated spacecraft environment. One unit was tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the latter part of 2006. Those test results were reported in a 2007 ICES paper.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

2008-06-29
2008-01-2166
Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Journal Article

Post-Landing Orion Crew Survival in Warm Ocean Areas: A Case Study in Iterative Environmental Design

2008-06-29
2008-01-2080
The Orion crew module (CM) is being designed to perform survivable land and water landings. There are many issues associated with post-landing crew survival. In general, the most challenging of the realistic Orion landing scenarios from an environmental control standpoint is the off-nominal water landing. Available power and other consumables will be very limited after landing, and it may not be possible to provide full environmental control within the crew cabin for very long after splashdown. Given the bulk and thermal insulation characteristics of the crew-worn pressure suits, landing in a warm tropical ocean area would pose a risk to crew survival from elevated core body temperatures, if for some reason the crewmembers were not able to remove their suits and/or exit the vehicle. This paper summarizes the analyses performed and conclusions reached regarding post-landing crew survival following a water landing, from the standpoint of the crew's core body temperatures.
Technical Paper

Cascade Distillation Subsystem Development Testing

2008-01-29
2008-01-2195
Recovery of potable water from wastewater is essential for the success of long-term manned missions to the moon and Mars. Honeywell International and the team consisting of Thermodistillation Company (Kyiv, Ukraine) and NASA Johnson Space Center (JSC) Crew and Thermal Systems Division are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The Wastewater Processing Cascade Distillation Subsystem (CDS) utilizes an innovative and efficient multi-stage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage prototype of the subsystem was built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for development testing.
Technical Paper

Overview of Potable Water Systems on Spacecraft Vehicles and Applications for the Crew Exploration Vehicle (CEV)

2007-07-09
2007-01-3259
Providing water necessary to maintain life support has been accomplished in spacecraft vehicles for over forty years. This paper will investigate how previous U.S. space vehicles provided potable water. The water source for the spacecraft, biocide used to preserve the water on-orbit, water stowage methodology, materials, pumping mechanisms, on-orbit water requirements, and water temperature requirements will be discussed. Where available, the hardware used to provide the water and the general function of that hardware will also be detailed. The Crew Exploration Vehicle (CEV or Orion) water systems will be generically discussed to provide a glimpse of how similar they are to water systems in previous vehicles. Conclusions, questions, and recommendations on strategies that could be applied to CEV based on previous spacecraft water system lessons learned will be made.
Technical Paper

ISRU Production of Life Support Consumables for a Lunar Base

2007-07-09
2007-01-3106
Similar to finding a home on Earth, location is important when selecting where to set up an exploration outpost. Essential considerations for comparing potential lunar outpost locations include: (1) areas nearby that would be useful for In-Situ Resource Utilization (ISRU) oxygen extraction from regolith for crew breathing oxygen as well as other potential uses; (2) proximity to a suitable landing site; (3) availability of sunlight; (4) capability for line-of-sight communications with Earth; (5) proximity to permanently-shadowed areas for potential in-situ water ice; and (6) scientific interest. The Mons Malapert1 (Malapert Mountain) area (85.5°S, 0°E) has been compared to these criteria, and appears to be a suitable location for a lunar outpost.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Testing of the Multi-Fluid Evaporator Engineering Development Unit

2007-07-09
2007-01-3205
Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. A MFE would be used from Earth sea level conditions to the vacuum of space. The current Space Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. With the MFE system, both functions are combined into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing cross-sectional area to keep the back pressure low. Its multiple layer construction allows for efficient scale up to the desired heat rejection rate.
Technical Paper

Chemical Characterization of U.S. Lab Condensate

2006-07-17
2006-01-2016
Approximately 50% of the water consumed by International Space Station crewmembers is water recovered from cabin humidity condensate. Condensing heat exchangers in the Russian Service Module (SM) and the United States On-Orbit Segment (USOS) are used to control cabin humidity levels. In the SM, humidity condensate flows directly from the heat exchanger to a water recovery system. In the USOS, a metal bellows tank located in the US Laboratory Module (LAB) collects and stores condensate, which is periodically off-loaded in about 20-liter batches to Contingency Water Containers (CWCs). The CWCs can then be transferred to the SM and connected to a Condensate Feed Unit that pumps the condensate from the CWCs into the water recovery system for processing. Samples of the condensate in the tank are collected during the off-loads and returned to Earth for analyses.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

2006-07-17
2006-01-2203
Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system.
Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Freeze Tolerant Radiator for Advanced EMU

2004-07-19
2004-01-2263
The current Extravehicular Mobility Unit (EMU) system provides thermal control using a sublimator to reject both the heat produced by the astronaut's metabolic activity as well as the heat produced by the Portable Life Support Unit (PLSS). This sublimator vents up to eight pounds of water each Extravehicular Activity (EVA). If this load could be radiated to space, the amount of water that would need to be sublimated could be greatly reduced. There is enough surface area on the EMU that almost all of the heat can be rejected by radiation. Radiators, however, reject heat at a relatively constant rate, while the astronaut generates heat at a variable rate. To accommodate this variable heat load, NASA is developing a new freeze tolerant radiator where the tubes can selectively freeze to “turn down” the radiator and adjust to the heat rejection requirement. This radiator design significantly reduces the amount of expendable water needed for the sublimator.
Technical Paper

Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

2004-07-19
2004-01-2444
The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (CO2) from cabin air. CO2 product water vapor measurements from a CDRA test bed unit at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the CO2 desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of ∼40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact.
Technical Paper

ARPCS2AT2: A Tool for Atmospheric Pressure and Composition Control Analysis

2003-07-07
2003-01-2437
A generalized computer program for analysis of pressure and composition in multiple volume systems has been under development by the National Aeronautics and Space Administration (NASA) since 1976. This paper describes the most recent developments in the program. These improvements include the expansion of the program to nine volumes, improvements to the model of the International Space Station (ISS) carbon dioxide removal system, and addition of a detailed Sabatier carbon dioxide reduction mode. An evaluation of the feasibility of adding of trace contaminant tracking was also performed. This paper will also present the results of an analysis that compares model predictions with ISS flight data for carbon dioxide (CO2) maintenance.
Technical Paper

Development and Evaluation of an Advanced Water-Jacketed High Intensity Discharge Lamp

2003-07-07
2003-01-2455
During the period July 2001 to March 2002, the performance of a water-jacketed high intensity discharge lamp of advanced design was evaluated within a lamp test stand at The University of Arizona (UA), Controlled Environment Agriculture Center (CEAC) in Tucson, Arizona. The lamps and test stand system were developed by Mr. Phil Sadler of Sadler Machine Company, Tempe, Arizona, and supported by a Space Act Agreement between NASA-Johnson Space Center (JSC) and UA. The purpose was for long term testing of the prototype lamp and demonstration of an improved procedure for use of water-jacketed lamps for plant production within the close confines of controlled environment facilities envisioned by NASA within Bioregenerative Life Support Systems. The lamp test stand consisted of six, 400 watt water-cooled, high pressure sodium HID lamps, mounted within a framework.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
X