Refine Your Search

Topic

Author

Search Results

Technical Paper

Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

2011-06-13
2011-38-0065
An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5% scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from α = -5 to 85 deg. and β = -45 to 45 deg. at a Reynolds number of 0.24x10⁶ and Mach number of 0.06. The 3.5% scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5% scale GTM.
Technical Paper

NASA Personal Air Transportation Technologies

2006-08-30
2006-01-2413
The ability to personalize air travel through the use of an on-demand, highly distributed air transportation system will provide the degree of freedom and control that Americans enjoy in other aspects of their life. This new capability, of traveling when, where, and how we want with greatly enhanced mobility, accessibility, and speed requires vehicle and airspace technologies to provide the equivalent of an internet PC ubiquity, to an air transportation system that now exists as a centralized hub and spoke mainframe NASA airspace related research in this new category of aviation has been conducted through the Small Aircraft Transportation (SATS) project, while the vehicle technology efforts have been conducted in the Personal Air Vehicle sector of the Vehicle Systems Program.
Technical Paper

Biologically Inspired Micro-Flight Research

2003-09-08
2003-01-3042
Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed-wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.
Technical Paper

A Comparison of Pressure Sensitive Paint (PSP) Techniques for Aerodynamic Testing at Slow Velocities

2002-03-04
2002-01-0255
Pressure Sensitive Paint (PSP) has been used for several years by the aircraft industry in transonic wind tunnel testing where the oxygen concentrations are low and the luminescence of the paint is easily recorded. Extending PSP to slower speeds where the oxygen concentrations are closer to atmospheric conditions is much more challenging. For the past few years, work has been underway at both Wright Patterson Air Force Base and Ford Motor Company to advance PSP techniques for testing at slower speeds. The CRADA (Cooperative Research and Development Agreement) provided a way for comparisons to be made of the different PSP systems that were being investigated. This paper will report on PSP tests conducted as part of the CRADA.
Technical Paper

Spin Resistance Development for Small Airplanes - A Retrospective

2000-05-09
2000-01-1691
With the resurgence of the General Aviation industry, the incentive to develop new airplanes for the low-end market has increased. Increased production of small airplanes provides the designers and manufacturers the opportunity to incorporate advanced technologies that are not readily retrofitable to existing designs. Spin resistance is one such technology whose development was concluded by NASA during the 1980’s when the production of small airplanes had slipped into near extinction. This paper reviews the development of spin resistance technology for small airplanes with emphasis on wing design. The definition of what constitutes spin resistance and the resulting amendment of the Federal Aviation Regulations Part 23 to enable certification of spin resistant airplanes are also covered.
Technical Paper

Piezoelectric Actuator Configuration Optimization for Active Structural Acoustic Control in Aircraft

1997-05-01
971461
This paper has presented a technique for the determination of an optimal configuration of fuselage mounted piezoelectric actuators for active structural acoustic control of interior noise in aircraft. The technique has demonstrated much potential in preliminary experiments where actuators were configured to couple into the first principal component of the acoustically coupled fuselage vibration. In this test, average reductions of 6 dB at the error microphones and 4 dB at five auxiliary microphones were observed for a pure tone disturbance at the left forward engine pylon of a business jet. This disturbance was used to simulate an oscillating force due to engine unbalance.
Technical Paper

Overview of Noise Reduction Technology in the NASA Short Haul (Civil Tiltrotor) Program

1996-11-18
962273
Noise is a barrier issue for penetration of civil markets by future tiltrotor aircraft. To address this issue, elements of the NASA Short Haul (Civil Tiltrotor) [SH(CT)] program are working in three different areas: noise abatement, noise reduction, and noise prediction. Noise abatement refers to modification of flight procedures to achieve quieter approaches. Noise reduction refers to innovative new rotor designs that would reduce the noise produced by a tiltrotor. Noise prediction activities are developing the tools to guide the design of future quiet tiltrotors. This paper presents an overview of SH(CT) activities in all three areas, including sample results.
Technical Paper

Status of Propeller Noise Prediction Methods for General Aviation Aircraft

1995-05-01
951175
This paper reviews the status of analytical and empirical propeller noise prediction methods with specific emphasis on those that are suitable for General Aviation propellers. Specifically, the paper reviews the capabilities and limitations of methods that are simple enough for ease of use by industry while providing sufficient accuracy to guide the development of new propeller designs or the modification of existing propeller driven airplanes to satisfy increased certification stringency or cabin comfort objectives.
Technical Paper

Advanced Analysis Methods and Nondestructive Inspection Technology Under Development in the NASA Airframe Structural Integrity Program

1994-03-01
941247
An advanced analytical methodology has been developed for predicting the residual strength of stiffened thin-sheet riveted shell structures such as those used for the fuselage of a commercial transport aircraft. The crack-tip opening angle elastic-plastic fracture criterion has been coupled to a geometric and material nonlinear finite element shell code for analyzing complex structural behavior. An automated adaptive mesh refinement capability together with global-local analysis methods have been developed to predict the behavior of fuselage structure with long cracks. This methodology is currently being experimentally verified. Advanced nondestructive inspection technology has been developed that will provide airline operators with the capability to conduct reliable and economical broad-area inspections of aircraft structures.
Technical Paper

Aerodynamic-Performance Planform and Camber Optimization of a Supersonic Transport Wing

1993-09-01
932632
This paper describes recent research in integrated aerodynamic-performance design optimization applied to a supersonic transport wing. The subsonic and supersonic aerodynamics are modeled with linear theory and the aircraft performance is evaluated by using a complete mission analysis. The goal of the optimization problem is to either maximize the aircraft range or minimize the take-off gross weight while constraining the total fuel load and approach speed. A major difficulty encountered during this study was the inability to obtain accurate derivatives of the aerodynamic models with respect to the planform shape. This work addresses this problem and provides one solution for the derivative difficulties. Additional optimization studies reveal the impact of camber design on the global optimization problem. In these studies, the plan-form optimization is first conducted on a flat plate wing and camber optimization is performed on the resulting planform.
Technical Paper

NASA Evaluation of Type II Chemical Depositions

1993-09-01
932582
Recent findings from NASA Langley tests to define effects of aircraft Type II chemical deicer depositions on aircraft tire friction performance are summarized. The Aircraft Landing Dynamics Facility (ALDF) is described together with the scope of the tire cornering and braking friction tests conducted up to 160 knots ground speed. Some lower speed 32-96 km/hr (20-60 mph) test run data obtained using an Instrumented Tire Test Vehicle (ITTV) to determine effects of tire bearing pressure and transverse grooving on cornering friction performance are also discussed. Recommendations are made concerning which parameters should be evaluated in future testing.
Technical Paper

The Effect of Runway Surface and Braking on Shuttle Orbiter Main Gear Tire Wear

1992-10-01
922038
In 1988, a 1067 m long touchdown zone on each end of the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) was modified from its original heavy-broom finish with transverse grooves configuration to a longitudinal corduroy surface texture with no transverse grooves. The intent of this modification was to reduce the spin-up wear on the Orbiter main gear tires and provide for somewhat higher crosswind capabilities at that site. The modification worked well, so it was proposed that the remainder of the runway be modified as well to permit even higher crosswind landing capability. Tests were conducted at the NASA Langley Aircraft Landing Dynamics Facility (ALDF) to evaluate the merit of such a modification. This paper discusses the results of these tests, and explains why the proposed modification did not provide the expected improvement and thus was not implemented.
Technical Paper

Braking, Steering, and Wear Performance of Radial-Belted and Bias-Ply Aircraft Tires

1992-04-01
921036
Preliminary braking, steering, and tread wear performance results from testing of 26 x 6.6 and 40 x 14 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program involving these two different tire sizes as well as an H46 x 18-20 tire size which has not yet been evaluated. Both dry and wet surface conditions were evaluated on two different test surfaces - nongrooved Portland cement concrete and specially constructed, hexagonal-shaped concrete paver blocks. Use of paver blocks at airport facilities has been limited to ramp and taxiway areas and the industry needs a tire friction evaluation of this paving material prior to additional airport pavement installations.
Technical Paper

Hybrid Laminar Flow Control Applied to Advanced Turbofan Engine Nacelles

1992-04-01
920962
In recent years, the National Aeronautics and Space Administration (NASA) in cooperation with U.S. industry has performed flight and wind-tunnel investigations aimed at demonstrating the feasibility of obtaining significant amounts of laminar boundary-layer flow at moderate Reynolds numbers on the swept-back wings of commercial transport aircraft. Significant local drag reductions have been recorded with the use of a hybrid laminar flow control (HLFC) concept. In this paper, we address the potential application of HLFC to the external surface of an advanced, high bypass ratio turbofan engine nacelle with a wetted area which approaches 15 percent of the wing total wetted area of future commercial transports. A pressure distribution compatible with HLFC is specified and the corresponding nacelle geometry is computed utilizing a predictor/corrector design method. Linear stability calculations are conducted to provide predictions of the extent of the laminar boundary layer.
Technical Paper

Numerical Simulation of Propulsion-Induced Aerodynamic Characteristics on a Wing-Afterbody Configuration with Thrust Vectoring

1991-04-01
911174
Aerodynamic effects induced from vectoring an exhaust jet are investigated using a well established thin-layer Reynolds averaged Navier-Stokes code. This multiple block code has been modified to allow for the specification of jet properties at a block face. The applicability of the resulting code for thrust vectoring applications is verified by comparing numerically and experimentally determined pressure coefficient distributions for a jet-wing afterbody configuration with a thrust-vectoring 2-D nozzle. Induced effects on the body and nearby wing from thrust vectoring are graphically illustrated.
Technical Paper

Orbiter Post-Tire Failure and Skid Testing Results

1989-09-01
892338
An investigation was conducted at the NASA Langley Research Center's Aircraft Landing Dynamics Facility (ALDF) to define the post-tire failure drag characteristics of the Space Shuttle Orbiter main tire and wheel assembly. Skid tests on various materials were also conducted to define their friction and wear rate characteristics under higher speed and bearing pressures than any previous tests. The skid tests were conducted to support a feasibility study of adding a skid to the orbiter strut between the main tires to protect an intact tire from failure due to overload should one of the tires fail. Roll-on-rim tests were conducted to define the ability of a standard and a modified orbiter main wheel to roll without a tire. Results of the investigation are combined into a generic model of strut drag versus time under failure conditions for inclusion into rollout simulators used to train the shuttle astronauts.
Technical Paper

Fifty Years of Laminar Flow Flight Testing

1988-10-01
881393
Laminar flow flight experiments conducted over the past fifty years will be reviewed. The emphasis will be on flight testing conducted under the NASA Laminar Flow Control Program which has been directed towards the most challenging technology application- the high subsonic speed transport. The F111/TACT NLF Glove Flight Test, the F-14 Variable Sweep Transition Flight Experiment, the 757 Wing Noise Survey and NLF Glove Flight Test, the NASA Jetstar Leading Edge Flight Test Program, and the recently initiated Hybrid Laminar Flow Control Flight Experiment will be discussed. To place these recent experiences in perspective, earlier important flight tests will first be reviewed to recall the lessons learned at that time.
Technical Paper

Supersonic Jet Plume Interaction with a Flat Plate

1987-12-01
872361
A model scaled test apparatus has been designed and assembled to simulate supersonic plume/aircraft structure Interaction for the cruise configuration. Preliminary results have been obtained to demonstrate the severity of the associated acoustic fatigue loads. Two rectangular supersonic nozzles with aspect ratios of 7 and 7.7 ware fabricated with internal convergent-divergent contours designed for Mach numbers of 1.35 and 2.00. A large flat plate was located beneath each nozzle at various nozzle height separations. The plate was instrumented to measure surface dynamic pressure and mean wall temperature. Phase averaged schliern measurements revealed the presence of high intensity acoustic emission from the supersonic plume above the plate and directed upstream. This radiation can be associated with the shock noise generation mechanism. Narrow band spectra of wall dynamic pressure show spectral peaks with amplitude levels as high as 1 PSI.
Technical Paper

Flight Test Results for Several Light, Canard-Configured Airplanes

1987-10-01
871801
Brief flight evaluations of two different, light, composite constructed, canard and winglet configured airplanes were performed to assess their handling qualities; one airplane was a single engine, pusher design and the other a twin engine, push-pull configuration. An emphasis was placed on the slow speed/high angle of attack region for both airplanes and on the engine-out regime for the twin. Mission suitability assessment included cockpit and control layout, ground and airborne handling qualities, and turbulence response. Very limited performance data was taken. Stall/spin tests and the effects of laminar flow loss on performance and handling qualities were assessed on an extended range, single engine pusher design.
Technical Paper

Cornering and Wear Behavior of the Space Shuttle Orbiter Main Gear Tire

1987-10-01
871867
One of the factors needed to describe the handling characteristics of the Space Shuttle Orbiter during the landing rollout is the response of the vehicle's tires to variations in load and yaw angle. An experimental investigation of the cornering characteristics of the Orbiter main gear tires was conducted at the NASA Langley Research Center Aircraft Landing Dynamics Facility. This investigation compliments earlier work done to define the Orbiter nose tire cornering characteristics. In the investigation, the effects of load and yaw angle were evaluated by measuring parameters such as side load and drag load, and obtaining measurements of aligning torque. Because the tire must operate on an extremely rough runway at the Shuttle Landing Facility at Kennedy Space Center (KSC), tests were also conducted to describe the wear behavior of the tire under various conditions on a simulated KSC runway surface. Mathematical models for both the cornering and the wear behavior are discussed.
X