Refine Your Search

Topic

Author

Search Results

Technical Paper

Radar Detection of High Concentrations of Ice Particles - Methodology and Preliminary Flight Test Results

2019-06-10
2019-01-2028
High Ice Water Content (HIWC) has been identified as a primary causal factor in numerous engine events over the past two decades. Previous attempts to develop a remote detection process utilizing modern commercial radars have failed to produce reliable results. This paper discusses the reasons for previous failures and describes a new technique that has shown very encouraging accuracy and range performance without the need for any modifications to industry’s current radar design(s). The performance of this new process was evaluated during the joint NASA/FAA HIWC RADAR II Flight Campaign in August of 2018. Results from that evaluation are discussed, along with the potential for commercial application, and development of minimum operational performance standards for future radar products.
Journal Article

Noise Control Capability of Structurally Integrated Resonator Arrays in a Foam-Treated Cylinder

2017-06-05
2017-01-1765
Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Journal Article

Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

2008-06-29
2008-01-2162
Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results.
Technical Paper

Thermal Model Correlation for Mars Reconnaissance Orbiter

2007-07-09
2007-01-3243
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and began aerobraking at Mars in March 2006. In order to save propellant, MRO used aerobraking to modify the initial orbit at Mars. The spacecraft passed through the atmosphere briefly on each orbit; during each pass the spacecraft was slowed by atmospheric drag, thus lowering the orbit apoapsis. The largest area on the spacecraft, most affected by aeroheating, was the solar arrays. A thermal analysis of the solar arrays was conducted at NASA Langley Research Center to simulate their performance throughout the entire roughly 6-month period of aerobraking. A companion paper describes the development of this thermal model. This model has been correlated against many sets of flight data. Several maneuvers were performed during the cruise to Mars, such as thruster calibrations, which involve large abrupt changes in the spacecraft orientation relative to the sun.
Technical Paper

Thermal Modeling of the Mars Reconnaissance Orbiter 's Solar Panel and Instruments During Aerobraking

2007-07-09
2007-01-3244
The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft's design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, (from a temperature limit standpoint), thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.
Technical Paper

Next Generation NASA GA Advanced Concept

2006-08-30
2006-01-2430
Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.
Technical Paper

NASA Personal Air Transportation Technologies

2006-08-30
2006-01-2413
The ability to personalize air travel through the use of an on-demand, highly distributed air transportation system will provide the degree of freedom and control that Americans enjoy in other aspects of their life. This new capability, of traveling when, where, and how we want with greatly enhanced mobility, accessibility, and speed requires vehicle and airspace technologies to provide the equivalent of an internet PC ubiquity, to an air transportation system that now exists as a centralized hub and spoke mainframe NASA airspace related research in this new category of aviation has been conducted through the Small Aircraft Transportation (SATS) project, while the vehicle technology efforts have been conducted in the Personal Air Vehicle sector of the Vehicle Systems Program.
Technical Paper

The Third Wave of Aeronautics: On-Demand Mobility

2006-08-30
2006-01-2429
Aviation has experienced one hundred years of dynamic growth and change, resulting in the current air transportation system dominated by commercial airliners in a hub and spoke infrastructure. The first fifty years of aviation was a very chaotic, rapid evolutionary process involving disruptive technologies that required frequent adaptation. The second fifty years produced a stable evolutionary optimization of services based on achieving an objective function of decreased costs. In the third wave of aeronautics over the next fifty years, there is the potential for aviation to transform itself into a more robust, scalable, adaptive, secure, safe, affordable, convenient, efficient, and environmentally fare and friendly system.
Technical Paper

21st Century Lunar Exploration: Advanced Radiation Exposure Assessment

2006-07-17
2006-01-2106
On January 14, 2004 President George W Bush outlined a new vision for NASA that has humans venturing back to the moon by 2020. With this ambitious goal, new tools and models have been developed to help define and predict the amount of space radiation astronauts will be exposed to during transit and habitation on the moon. A representative scenario is used that includes a trajectory from LEO to a Lunar Base, and simplified CAD models for the transit and habitat structures. For this study galactic cosmic rays, solar proton events, and trapped electron and proton environments are simulated using new dynamic environment models to generate energetic electron, and light and heavy ion fluences. Detailed calculations are presented to assess the human exposure for transit segments and surface stays.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Development of the Temperature Control Scheme for the CALIPSO Integrated Lidar Transmitter Subsystem

2006-07-17
2006-01-2277
Following the satellite-level thermal vacuum test for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation spacecraft, project thermal engineers determined that the radiator used to cool the Integrated Lidar Transmitter subsystem during its operation was oversized. In addition, the thermal team also determined that the operational heaters were undersized, thus creating two related problems. Without the benefit of an additional thermal vacuum test, it was necessary to develop and prove by analysis a laser temperature control scheme using the available resources within the spacecraft along with proper resizing of the radiator. A resizing methodology and new laser temperature control scheme were devised that allowed, with a minimum of 20% heater power margin, the operating laser to maintain temperature at the preferable set point. This control scheme provided a solution to a critical project problem.
Technical Paper

An Improved Green’s Function Code for HZE Ion Transport

2006-07-17
2006-01-2147
A new Green’s function code (GRNTRN) capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The computational model consists of combinations of physical perturbation expansions based on the scales of atomic interaction, multiple scattering, and nuclear reactive processes with use of the Neumann-asymptotic expansions with non-perturbative corrections. The code contains energy loss due to straggling, nuclear attenuation, nuclear fragmentation with energy dispersion and downshifts. Recent publications have focused on code validation in the laboratory environment and have shown that the code predicts energy loss spectra accurately as measured by solid-state detectors in ion beam experiments. In this paper emphasis is placed on code validation with space boundary conditions.
Technical Paper

A New Method for Calculating Low Energy Neutron Flux

2006-07-17
2006-01-2149
A new method is developed for calculating the low energy neutron flux in a space environment which is protected from galactic cosmic rays (GCR) and solar particle events (SPE) by shielding materials. Our calculations are compared with low energy neutron flux flight data recorded on four different STS low earth orbit missions. We also compare our neutron flux calculations with the low energy neutron flux data recorded by MIR. The low energy neutron flux calculations can be described as a deterministic method for solving the Boltzmann equation for the light ion flux associated with a given environment. Existing Monte Carlo neutron flux simulations associated with the MIR and ISS space stations are also compared with our deterministic method for calculating neutron flux.
Technical Paper

Space Radiation Exposure Mitigation: Study of Select Materials

2006-07-17
2006-01-2103
The development of “next generation” human-rated space vehicles, surface habitats and rovers, and spacesuits will require the integration of low-cost, lightweight materials that also include excellent mechanical, structural, and thermal properties. In addition, it is highly desirable that these materials exhibit excellent space radiation exposure mitigation properties for protection of both the crew and onboard sensitive electronics systems. In this paper, we present trapped electron and proton space radiation exposure computational results for a variety of materials and shielding thicknesses for several earth orbit scenarios that include 1) low earth orbit (LEO), 2) medium earth orbit (MEO), and 3) geostationary orbit (GEO). We also present space radiation exposure (galactic cosmic radiation and solar particle event) results as a function of selected materials and thicknesses.
Technical Paper

Nuclear Radiation Fields on the Mars Surface: Risk Analysis for Long-term Living Environment

2005-07-11
2005-01-2833
Mars, our nearest planet outward from the sun, has been targeted for several decades as a prospective site for expanded human habitation. Background space radiation exposures on Mars are expected to be orders of magnitude higher than on Earth. Recent risk analysis procedures based on detailed dosimetric techniques applicable to sensitive human organs have been developed along with experimental data regarding cell mutation rates resulting from exposures to a broad range of particle types and energy spectra. In this context, simulated exposure and subsequent risk for humans in residence on Mars are examined. A conceptual habitat structure, CAD-modeled with duly considered inherent shielding properties, has been implemented. Body self-shielding is evaluated using NASA standard computerized male and female models.
Technical Paper

A Time Dependent Model for the Lunar Radiation Environment

2005-07-11
2005-01-2831
In view of manned missions targeted to the Moon, for which radiation exposure is one of the greatest challenges to be tackled, it is of fundamental importance to have available a tool, which allows determination of the particle flux and spectra at any time and at any point of the lunar surface. With this goal in mind, a new model of the Moon’s radiation environment due to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) has been developed. Primary particles reach the lunar surface, and are transported all throughout the subsurface layers, with backscattering patterns taken into account. The surface itself has been modeled as regolith and bedrock, with composition taken from the results of the instruments flown on the Apollo missions, namely on the Apollo 12 from the Oceanus Procellarum landing site. Subsurface environments like lava tubes have been considered in the analysis.
Technical Paper

Parametric Shielding Strategies for Jupiter Magnetospheric Missions

2005-07-11
2005-01-2834
Judicious shielding strategies incorporated in the initial spacecraft design phase for the purpose of minimizing deleterious effects to onboard systems in intense radiation environments will play a major role in ensuring overall mission success. In this paper, we present parametric shielding analyses for the three Jupiter Icy Moons, Callisto, Ganymede, and Europa, as a function of time in orbit at each moon, orbital inclination, and various thicknesses, for low- and high-Z shielding materials. Trapped electron and proton spectra using the GIRE (Galileo Interim Radiation Electron) environment model were generated and used as source terms to both deterministic and Monte Carlo high energy particle transport codes to compute absorbed dose as a function of thickness for aluminum, polyethylene, and tantalum. Extensive analyses are also presented for graded-Z materials.
Technical Paper

Radiation Environment Modeling for the Planet Mars

2005-07-11
2005-01-2832
In view of manned missions targeted to Mars, for which radiation exposure is one of the greatest challenges to be tackled, it is of fundamental importance to have available a tool, which allows the determination of the particle flux and spectra at any time at any point of the Martian surface. With this goal in mind, a new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) has been developed. Primary particle environments computed for Martian conditions are transported within the Mars atmosphere, with temporal properties modeled with variable timescales, down to the surface, with topography and backscattering patterns taken into account. The atmospheric chemical and isotopic composition has been modeled over results from the in-situ Viking Lander measurements for both major and minor components.
Technical Paper

JOVIAN ICY MOON EXCURSIONS: Radiation Fields, Microbial Survival and Bio-contamination Study

2004-07-19
2004-01-2327
The effects of both the cosmic ray heavy ion exposures and the intense trapped electron exposures are examined with respect to impact on cellular system survival on exterior spacecraft surfaces as well as at interior (shielded) locations for a sample mission to Jupiter’s moons. Radiation transport through shield materials and subsequent exposures are calculated with the established Langley heavy ion and electron deterministic codes. In addition to assessing fractional DNA single and double strand breaks, a variety of cell types are examined that have greatly differing radio-sensitivities. Finally, implications as to shield requirements for controlled biological experiments are discussed.
X