Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Space Radiation Exposure Mitigation: Study of Select Materials

2006-07-17
2006-01-2103
The development of “next generation” human-rated space vehicles, surface habitats and rovers, and spacesuits will require the integration of low-cost, lightweight materials that also include excellent mechanical, structural, and thermal properties. In addition, it is highly desirable that these materials exhibit excellent space radiation exposure mitigation properties for protection of both the crew and onboard sensitive electronics systems. In this paper, we present trapped electron and proton space radiation exposure computational results for a variety of materials and shielding thicknesses for several earth orbit scenarios that include 1) low earth orbit (LEO), 2) medium earth orbit (MEO), and 3) geostationary orbit (GEO). We also present space radiation exposure (galactic cosmic radiation and solar particle event) results as a function of selected materials and thicknesses.
Technical Paper

Parametric Shielding Strategies for Jupiter Magnetospheric Missions

2005-07-11
2005-01-2834
Judicious shielding strategies incorporated in the initial spacecraft design phase for the purpose of minimizing deleterious effects to onboard systems in intense radiation environments will play a major role in ensuring overall mission success. In this paper, we present parametric shielding analyses for the three Jupiter Icy Moons, Callisto, Ganymede, and Europa, as a function of time in orbit at each moon, orbital inclination, and various thicknesses, for low- and high-Z shielding materials. Trapped electron and proton spectra using the GIRE (Galileo Interim Radiation Electron) environment model were generated and used as source terms to both deterministic and Monte Carlo high energy particle transport codes to compute absorbed dose as a function of thickness for aluminum, polyethylene, and tantalum. Extensive analyses are also presented for graded-Z materials.
X