Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Numerical Study on the Design of a Passive Pre-Chamber for a Heavy-Duty Hydrogen Combustion Engine

2024-04-09
2024-01-2112
Lean-burn hydrogen internal combustion engines are a good option for future transportation solutions since they do not emit carbon-dioxide and unburned hydro-carbons, and the emissions of nitric-oxides (NOx) can be kept low. However, under lean-burn conditions the combustion duration increases, and the combustion stability decreases, leading to a reduced thermal efficiency. Turbulent jet ignition (TJI) can be used to extend the lean-burn limit, while decreasing the combustion duration and improving combustion stability. The objective of this paper is to investigate the feasibility of a passive pre-chamber TJI system on a heavy-duty hydrogen engine under lean-burn conditions using CFD modelling. The studied concept is mono-fuel, port-fuel injected, and spark ignited in the pre-chamber. The overall design of the pre-chamber is discussed and the effect of design parameters on the engine performance are studied.
Technical Paper

Identifying the Driving Processes of Diesel Spray Injection through Mixture Fraction and Velocity Field Measurements at ECN Spray A

2020-04-14
2020-01-0831
Diesel spray mixture formation is investigated at target conditions using multiple diagnostics and laboratories. High-speed Particle Image Velocimetry (PIV) is used to measure the velocity field inside and outside the jet simultaneously with a new frame straddling synchronization scheme. The PIV measurements are carried out in the Engine Combustion Network Spray A target conditions, enabling direct comparisons with mixture fraction measurements previously performed in the same conditions, and forming a unique database at diesel conditions. A 1D spray model, based upon mass and momentum exchange between axial control volumes and near-Gaussian velocity and mixture fraction profiles is evaluated against the data.
Journal Article

Ramped Versus Square Injection Rate Experiments in a Heavy-Duty Diesel Engine

2020-04-14
2020-01-0300
CO2 regulations on heavy-duty transport are introduced in essentially all markets within the next decade, in most cases in several phases of increasing stringency. To cope with these mandates, developers of engines and related equipment are aiming to break new ground in the fields of combustion, fuel and hardware technologies. In this work, a novel diesel fuel injector, Delphi’s DFI7, is utilized to experimentally investigate and compare the performance of ramped injection rates versus traditional square fueling profiles. The aim is specifically to shift the efficiency and NOx tradeoff to a more favorable position. The design of experiments methodology is used in the tests, along with statistical techniques to analyze the data. Results show that ramped and square rates - after optimization of fueling parameters - produce comparable gross indicated efficiencies.
Technical Paper

Investigation of Late Stage Conventional Diesel Combustion - Effect of Additives

2018-09-10
2018-01-1787
The accepted model of conventional diesel combustion [1] assumes a rich premixed flame slightly downstream of the maximum liquid penetration. The soot generated by this rich premixed flame is burnt out by a subsequent diffusion flame at the head of the jet. Even in situations in which the centre of combustion (CA50) is phased optimally to maximize efficiency, slow late stage combustion can still have a significant detrimental impact on thermal efficiency. Data is presented on potential late-stage combustion improvers in a EURO VI compliant HD engine at a range of speed and load points. The operating conditions (e.g. injection timings, EGR levels) were based on a EURO VI calibration which targets 3 g/kWh of engine-out NOx. Rates of heat release were determined from the pressure sensor data. To investigate late stage combustion, focus was made on the position in the cycle at which 90% of the fuel had combusted (CA90). An EN590 compliant fuel was tested.
Technical Paper

Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

2017-10-08
2017-01-2403
In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NOX) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release.
Technical Paper

Spray Combustion Analysis of Humins

2017-09-04
2017-24-0119
Second generation biomass is an attractive renewable feedstock for transport fuels. Its sulfur content is generally negligible and the carbon cycle is reduced from millions to tens of years. One hitherto non-valorized feedstock are so-called humins, a residual product formed in the conversion of sugars to platform chemicals, such as hydroxymethylfurfural and methoxymethylfurfural, intermediates in the production of FDCA, a building block used to produce the polyethylene furanoate (PEF) bottle by Avantium. The focus of this study is to investigate the spray combustion behavior of humins as a renewable alternative for heavy fuel oil (HFO) under large two-stroke engine-like conditions in an optically accessible constant volume chamber.
Journal Article

Experimental and Numerical Analyses of Liquid and Spray Penetration under Heavy-Duty Diesel Engine Conditions

2016-04-05
2016-01-0861
The modeling of fuel sprays under well-characterized conditions relevant for heavy-duty Diesel engine applications, allows for detailed analyses of individual phenomena aimed at improving emission formation and fuel consumption. However, the complexity of a reacting fuel spray under heavy-duty conditions currently prohibits direct simulation. Using a systematic approach, we extrapolate available spray models to the desired conditions without inclusion of chemical reactions. For validation, experimental techniques are utilized to characterize inert sprays of n-dodecane in a high-pressure, high-temperature (900 K) constant volume vessel with full optical access. The liquid fuel spray is studied using high-speed diffused back-illumination for conditions with different densities (22.8 and 40 kg/m3) and injection pressures (150, 80 and 160 MPa), using a 0.205-mm orifice diameter nozzle.
Journal Article

Direct Injection of Diesel-Butane Blends in a Heavy Duty Engine

2011-12-06
2011-01-2400
Increasing fuel prices keep bringing attention to alternative, cheaper fuels. Liquefied Petroleum Gas (LPG) has been well known for decades as an alternative fuel for spark ignition (SI) passenger cars. More recently, aftermarket LPG systems were also introduced to Heavy Duty transport vehicles. These (port fuel) systems either vaporize the liquid fuel and then mix it with intake air, or inject fuel into the engine's intake ports. While this concept offers significant fuel cost reductions, for aftermarket certification and large-scale OEM use some concerns are present. Unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions are known to be high because of premixed charge getting trapped into crevices and possibly being blown through during valve-overlap. Apart from the higher emission levels, this also limits fuel efficiency and therefore cost savings.
Technical Paper

On-Board Plasma Assisted Fuel Reforming

2011-09-11
2011-24-0088
It is well known that the addition of gaseous fuels to the intake manifold of diesel engines can have significant benefits in terms of both reducing emissions of hazardous gases and soot and improving fuel economy. Particularly, the addition of LPG has been investigated in numerous studies. Drawbacks, however, of such dual fuel strategies can be found in storage complexity and end-user inconvenience. It is for this reason that on-board refining of a single fuel (for example, diesel) could be an interesting alternative. A second-generation fuel reformer has been engineered and successfully tested. The reformer can work with both gaseous and liquid fuels and by means of partial oxidation of a rich fuel-air mix, converts these into syngas: a mixture of H₂ and CO. The process occurs as partial oxidation takes place in an adiabatic ceramic reaction chamber. High efficiency is ensured by the high temperature inside the chamber due to heat release.
Technical Paper

Non-Equilibrium Plasma Ignition for Internal Combustion Engines

2011-09-11
2011-24-0090
High-voltage nanosecond gas discharge has been shown to be an efficient way to ignite ultra-lean fuel air mixtures in a bulk volume, thanks to its ability to produce both high temperature and radical concentration in a large discharge zone. Recently, a feasibility study has been carried out to study plasma-assisted ignition under high-pressure high-temperature conditions similar to those inside an internal combustion engine. Ignition delay times were measured during the tests, and were shown to be decreasing under high-voltage plasma excitation. The discharge allowed instant control of ignition, and specific electrode geometry designs enabled volumetric ignition even at high-pressure conditions.
Journal Article

Direct Injection of High Pressure Gas: Scaling Properties of Pulsed Turbulent Jets

2010-10-25
2010-01-2253
Existing gasoline DI injection equipment has been modified to generate single hole pulsed gas jets. Injection experiments have been performed at combinations of 3 different pressure ratios (2 of which supercritical) respectively 3 different hole geometries (i.e. length to diameter ratios). Injection was into a pressure chamber with optical access. Injection pressures and injector hole geometry were selected to be representative of current and near-future DI natural gas engines. Each injector hole design has been characterized by measuring its discharge coefficient for different Re-levels. Transient jets produced by these injectors have been visualized using planar laser sheet Mie scattering (PLMS). For this the injected gas was seeded with small oil droplets. The corresponding flow field was measured using particle image velocimetry (PIV) laser diagnostics.
Journal Article

Waste Energy Driven Air Conditioning System (WEDACS)

2009-09-13
2009-24-0063
In the port injected Spark Ignition (SI) engine, the single greatest part load efficiency reducing factor are energy losses over the throttle valve. The need for this throttle valve arises from the fact that engine power is controlled by the amount of air in the cylinders, since combustion occurs stoichiometrically in this type of engine. In WEDACS (Waste Energy Driven Air Conditioning System), a technology patented by the Eindhoven University of Technology, the throttle valve is replaced by a turbine-generator combination. The turbine is used to control engine power. Throttling losses are recovered by the turbine and converted to electrical energy. Additionally, when air expands in the turbine, its temperature decreases and it can be used to cool air conditioning fluid. As a result, load of the alternator and air conditioning compressor on the engine is decreased or even eliminated, which increases overall engine efficiency.
Journal Article

Porous Fuel Air Mixing Enhancing Nozzle (PFAMEN)

2009-09-13
2009-24-0028
One of the challenges with conventional diesel engines is the emission of soot. To reduce soot emission whilst maintaining fuel efficiency, an important pathway is to improve the fuel-air mixing process. This can be achieved by creating small droplets in order to enhance evaporation. Furthermore, the distribution of the droplets in the combustion chamber should be optimized, making optimal use of in-cylinder air. To deal with these requirements a new type of injector is proposed, which has a porous nozzle tip with pore diameters between 1 and 50 μm. First, because of the small pore diameters the droplets will also be small. From literature it is known that (almost) no soot is formed when orifice diameters are smaller than 50 μm. Second, the configuration of the nozzle can be chosen such that the whole cylinder can be filled with fine droplets (i.e., spray angle nearly 180°).
Technical Paper

Optimization of Operating Conditions in the Early Direct Injection Premixed Charge Compression Ignition Regime

2009-09-13
2009-24-0048
Early Direct Injection Premixed Charge Compression Ignition (EDI PCCI) is a widely researched combustion concept, which promises soot and CO2 emission levels of a spark-ignition (SI) and compression-ignition (CI) engine, respectively. Application of this concept to a conventional CI engine using a conventional CI fuel faces a number of challenges. First, EDI has the intrinsic risk of wall-wetting, i.e. collision of fuel against the combustion chamber periphery. Second, engine operation in the EDI regime is difficult to control as auto-ignition timing is largely decoupled from fuel injection timing. In dual-mode PCCI engines (i.e. conventional Dl at high loads) wall-wetting should be prevented by selecting appropriate (most favorable) operating conditions (EGR level, intake temperature, injection timing-strategy etc.) rather than by redesign of the engine (combustion chamber shape, injector replacement etc.).
Technical Paper

Design and Operation of a High Pressure, High Temperature Cell for HD Diesel Spray Diagnostics: Guidelines and Results

2009-04-20
2009-01-0649
This paper first compares strengths and weaknesses of different options for performing optical diagnostics on HD diesel sprays. Then, practical experiences are described with the design and operation of a constant volume test cell over a period of more than five years. In this test rig, pre-combustion of a lean gas mixture is used to generate realistic gas mixture conditions prior to fuel injection. Spray growth, vaporization are studied using Schlieren and Mie scattering experiments. The Schlieren set-up is also used for registration of light emitted by the combustion process; this can also provide information on ignition delay and on soot lift-off length. The paper further describes difficulties encountered with image processing and suggests methods on how to deal with them.
Technical Paper

Uncooled EGR as a Means of Limiting Wall-Wetting under Early Direct Injection Conditions

2009-04-20
2009-01-0665
Collision of injected fuel spray against the cylinder liner (wall-wetting) is one of the main hurdles that must be overcome in order for early direct injection Premixed Charge Compression Ignition (EDI PCCI) combustion to become a viable alternative for conventional DI diesel combustion. Preferably, the prevention of wall-wetting should be realized in a way of selecting appropriate (most favorable) operating conditions (EGR level, intake temperature, injection timing-strategy etc.) rather than mechanical modification of an engine (combustion chamber shape, injector replacement etc.). This paper presents the effect of external uncooled EGR (different fraction) on wall-wetting issues specified by two parameters, i.e. measured smoke number (experiment) and liquid spray penetration (model).
Technical Paper

Is Closed-Loop SCR Control Required to Meet Future Emission Targets?

2007-04-16
2007-01-1574
To meet 2010 emission targets, optimal SCR system performance is required. In addition, attention has to be paid to in-use compliance requirements. Closed-loop control seems an attractive option to meet the formulated goals. This study deals with the potential and limitations of closed-loop SCR control. High NOx conversion in combination with acceptable NH3 slip can be realized with an open-loop control strategy. However, closed-loop control is needed to make the SCR system robust for urea dosage inaccuracy, catalyst ageing and NOx engine-out variations. Then, the system meets conformity of production and in-use compliance norms. To demonstrate the potential of closed-loop SCR control, a NOx sensor based control strategy with cross-sensitivity compensation is compared with an adaptive surface coverage/NH3 slip control strategy and an open-loop strategy. The adaptive surface coverage/NH3 slip control strategy shows best performance over simulated ESC and ETC cycles.
Technical Paper

On a Model-Based Control of a Three-Way Catalytic Converter

2001-03-05
2001-01-0937
Though very important for the system performance, the dynamic behavior of the catalytic converter has mainly been neglected in the design of exhaust emission control systems. Since the major dynamic effects stem from the oxygen storage capabilities of the catalytic converter, a novel model-based control scheme, with the explicit control of the converter's oxygen storage level is proposed. The controlled variable cannot be measured, so it has to be predicted by an on-line running model (inferential sensor). The model accuracy and adaptability are therefore crucial. A simple algorithm for the model parameter identification is developed. All tests are performed on a previously developed first principle model of the catalytic converter so that the controller effectiveness and performance can clearly be observed.
Technical Paper

A Variable-Structure Fuzzy Controller (VSFC) for Clutch Actuator

1999-09-14
1999-01-2808
For the fast tracing control problem of clutch actuator with non-linear characteristics, multi-factor and multi-target, a kind of VSFC is proposed in this paper which has a PD forward unit to improve its fast tracing capability. According to the characteristic status of system, the proper control strategy is applied in the VSFC.
X