Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Complex of Systems for Oxygen Recovery Aboard a Manned Space Station

1993-07-01
932275
As space flights tend to be more prolonged problems of oxygen generation by physicochemical means assume greater importance. The paper deals with the water, electrolysis process, CO2 concentration and processing organisation schemes. Some operational results of the system for electrolysis of aqueous alkali solution and CO2 removal on Mir space station are presented. Expected characteristics of the complex system for oxygen generation from carbon dioxide are considered.
Technical Paper

A Physical/Chemical System for Water and Atmosphere Recovery Aboard a Space Station

1993-07-01
932077
The paper deals with the problems of development of physico-chemical systems for water recovery and atmosphere revitalization for long-duration space stations. Schematics of regenerative life support systems featuring a high degree of closure and biotechnological components are presented. A year-long experiment has proved the possibility for Man to stay in a closed artificial environment for a long time by consuming substances regenerated by physico-chemical means from the end products of life. A complex of the life support systems (LSS) on Mir space station allowing for oxygen and 90% water recovery as well as its future updating is considered.
Technical Paper

Hydrodynamic and Heat-and-Mass Transfer Processes in Space Station Water Recovery Systems

1993-07-01
932075
The paper systematizes typical hydrodynamic and heat-and-mass transfer chemical engineering processes realized in water recovery systems. The impact of micro-gravity on the processes is analyzed and general principles of the process organization in gas/liquid fluids are described. As examples, some typical separation processes in a coccurred flow channel with liquid suction through a porous wall, liquid evaporation into a vapour/gas fluid and vapour condensation from the vapour/gas mixture are considered for water recovery systems. A versatile approach based on an extended analogy between friction, heat transfer and mass transfer and on limited relative laws of a boundary layer at the permeable surface is suggested for an analysis and calculation of the friction resistance of a two-phase flow, heat transfer and mass transfer on evaporation and condensation. Recommendations for an analysis of the influence of free convection are made.
X