Refine Your Search

Topic

Author

Search Results

Technical Paper

Biofidelity Evaluation of the THOR and Hybrid III 50th Percentile Male Frontal Impact Anthropomorphic Test Devices

2017-11-13
2017-22-0009
The objective of this study is to present a quantitative comparison of the biofidelity of the THOR and Hybrid III 50th percentile male ATDs. Quantitative biofidelity was assessed using NHTSA’s Biofidelity Ranking System in a total of 21 test conditions, including impacts to the head, face, neck, upper thorax, lower oblique thorax, upper abdomen, lower abdomen, femur, knee, lower leg, and whole-body sled tests to evaluate upper body kinematics and thoracic response under frontal and frontal oblique restraint loading. Biofidelity Ranking System scores for THOR were better (lower) than Hybrid III in 5 of 7 body regions for internal biofidelity and 6 of 7 body regions for external biofidelity. Nomenclature is presented to categorize the quantitative results, which show overall good internal and external biofidelity of the THOR compared to the good (internal) and marginal (external) biofidelity of the Hybrid III.
Technical Paper

The Large Omnidirectional Child (LODC) ATD: Biofidelity Comparison with the Hybrid III 10 Year Old

2016-11-07
2016-22-0017
When the Hybrid III 10-year old (HIII-10C) anthropomorphic test device (ATD) was adopted into Code of Federal Regulations (CFR) 49 Part 572 as the best available tool for evaluating large belt-positioning booster seats in Federal Motor Vehicle Safety Standard (FMVSS) No. 213, NHTSA stated that research activities would continue to improve the performance of the HIII-10C to address biofidelity concerns. A significant part of this effort has been NHTSA’s in-house development of the Large Omnidirectional Child (LODC) ATD. This prototype ATD is comprised of (1) a head with pediatric mass properties, (2) a neck that produces head lag with Z-axis rotation at the atlanto-occipital joint, (3) a flexible thoracic spine, (4) multi-point thoracic deflection measurement capability, (5) skeletal anthropometry representative of a seated child, and (6) an abdomen that can directly measure belt loading.
Technical Paper

Dynamic Properties of the Upper Thoracic Spine-Pectoral Girdle (UTS-PG) System and Corresponding Kinematics in PMHS Sled Tests

2012-10-29
2012-22-0003
Anthropomorphic test devices (ATDs) should accurately depict head kinematics in crash tests, and thoracic spine properties have been demonstrated to affect those kinematics. To investigate the relationships between thoracic spine system dynamics and upper thoracic kinematics in crash-level scenarios, three adult post-mortem human subjects (PMHS) were tested in both Isolated Segment Manipulation (ISM) and sled configurations. In frontal sled tests, the T6-T8 vertebrae of the PMHS were coupled through a novel fixation technique to a rigid seat to directly measure thoracic spine loading. Mid-thoracic spine and belt loads along with head, spine, and pectoral girdle (PG) displacements were measured in 12 sled tests conducted with the three PMHS (3-pt lap-shoulder belted/unbelted at velocities from 3.8 - 7.0 m/s applied directly through T6-T8).
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Development of THOR-FLx: A Biofidelic Lower Extremity for Use with 5th Percentile Female Crash Test Dummies

2002-11-11
2002-22-0014
A new lower leg/ankle/foot system has been designed and fabricated to assess the potential for lower limb injuries to small females in the automotive crash environment. The new lower extremity can be retrofitted at present to the distal femur of the 5th percentile female Hybrid III dummy. Future plans are for integration of this design into the 5th percentile female THOR dummy now under development. The anthropometry of the lower leg and foot is based mainly on data developed by Robbins for the 5th percentile female, while the biomechanical response requirements are based upon scaling of 50th percentile male THOR-Lx responses. The design consists of the knee, tibia, ankle joints, foot, a representation of the Achilles tendon, and associated flesh/skins. The new lower extremity, known as THOR-FLx, is designed to be biofidelic under dynamic axial loading of the tibia, static and dynamic dorsiflexion, static plantarflexion and inversion/eversion.
Technical Paper

Large truck crash data collection

2001-06-04
2001-06-0159
The National Highway Safety Administration (NHTSA) is collecting crash data relating to large trucks. Two data collection programs are specified. One is a crash causation study to investigate the cause of fatal and serious large truck crashes over two years. The other study is a continuous effort collecting data on large truck motor carrier crashes in each state, as coded on police accident reports.
Technical Paper

Large school bus safety restraint evaluation

2001-06-04
2001-06-0158
This paper describes ongoing research conducted by the National Highway Traffic Safety Administration (NHTSA) to evaluate the potential of safety restraints on large school buses. School bus transportation is one of the safest forms of transportation in the United States. Large school buses provide protection because of their visibility, size, and weight, as compared to other types of motor vehicles. Additionally, they are required to meet minimum Federal Motor Vehicle Safety Standards (FMVSS) mandating compartmentalized seating, emergency exits, roof crush and fuel system integrity, and minimum bus body joint strength.
Technical Paper

PERFORMANCE EVALUATION OF DUAL STAGE PASSENGER AIR BAG SYSTEMS

2001-06-04
2001-06-0190
A research program was initiated to evaluate the performance of prototype dual stage passenger air bags in terms of both restraint system performance and deployment aggressivity for different size occupants. Variations in inflator partitions, vent hole diameter sizes, and deployment timing were examined. High speed unbelted sled tests were conducted with both 50th percentile male and 5th percentile female Hybrid III adult dummies at 48 kmph; and belted sled tests were conducted at 56 kmph. Low risk deployment tests with child dummies were conducted to evaluate air bag aggressivity. Overall, it was concluded that the dual stage air bag systems under evaluation had improved performance over the baseline single stage systems in terms of providing high speed protection while reducing aggressivity to out-of-position occupants; however, some dual stage systems may require additional occupant detection methodologies to suppress or control inflation.
Technical Paper

Characterization of CIREN

2001-06-04
2001-06-0024
This paper focuses on the overall structure of the Crash Injury Research and Engineering Network (CIREN), how data are collected, and what makes it unique. It discusses how it can be used to expand and enhance the information in other databases. CIREN is a collaborative effort to conduct research on crashes and injuries at nine Level 1 Trauma Centers which are linked by a computer network. Researchers can review data and share expertise, which will lead to a better understanding of crash injury mechanisms and the design of safer vehicles. CIREN data are being used in outreach and education programs on motor vehicle safety. CIREN outreach and education has already been credited with lifesaving information dissemination.
Technical Paper

Simulations of large school bus safety restraints~NHTSA

2001-06-04
2001-06-0226
This paper describes computer crash simulations performed by the National Highway Traffic Safety Administration (NHTSA) under the current research and testing activities on large school bus safety restraints. The simulations of a frontal rigid barrier test and comparative dynamic sled testing for compartmentalization, lap belt, and lap/shoulder belt restraint strategies are presented. School bus transportation is one of the safest forms of transportation in the United States. School age children transported in school buses are safer than children transported in motor vehicles of any other type. Large school buses provide protection because of their size and weight. Further, they must meet minimum Federal motor vehicle safety standards (FMVSSs) mandating compartmentalized seating, improved emergency exits, stronger roof structures and fuel systems, and better bus body joint strength.
Technical Paper

Field test of a pedestrian safety zone program for older pedestrians

2001-06-04
2001-06-0104
The objectives of this study were to develop and apply procedures for defining pedestrian safety zones for the older (age 65+) adult and to develop, implement and evaluate a countermeasure program in the defined zones. Zone definition procedures were applied to two cities: Phoenix and Chicago. Extensive countermeasure programs were implemented in both cities. A complete crash-based evaluation was conducted only for the city of Phoenix where data showed significant reductions in zone crashes to 65+ pedestrians over a period in which the city's population and overall pedestrian crashes increased. It was concluded that the zone process resulted in an effective and efficient means of deploying pedestrian countermeasures for the older adult.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for the NADS of the 1998 Chevrolet Malibu

2001-03-05
2001-01-0140
The paper discusses the development of a model for a 1998 Chevrolet Malibu for the National Advanced Driving Simulator’s (NADS) vehicle dynamics simulation, NADSdyna. The Malibu is the third vehicle modeled for the NADS, and this is the third paper dealing with model development. SAE Paper 970564 contains details of the model for the 1994 Ford Taurus and SAE Paper 1999–01-0121 contains details of the model for the 1997 Jeep Cherokee. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid body dynamics formulations. The suspension springs and shock absorbers are modeled as elements in the rigid body formulation. To complement the vehicle dynamics for the NADS application, subsystem models that include tire forces, braking, powertrain, aerodynamics, and steering are added to the rigid body dynamics model. The models provide state-of-the-art high fidelity vehicle handling dynamics for real-time simulation.
Technical Paper

Development and Design of Thor-Lx: The Thor Lower Extremity

1999-10-10
99SC09
A new lower extremity has been developed to be used with Thor, the NHTSA Advanced Frontal Dummy. The new lower extremity, known as Thor-Lx, consists of the femur, tibia, ankle joints, foot, a representation of the Achilles' tendon and the associated flash/skins, it has been designed to improve biomechanical response under axial loading of the femur during knee impacts, axial loading of the tibia, static and dynamic dorsiflexion, static plantarflexion and inversion/aversion. Instrumentation includes a standard Hybrid ill femur load cell, accelerometers, load cells, and rotary potentiometers to capture relevant kinematic and dynamic information from the foot and tibia. The design also allows the Tnor-Lx to be attached to the Hybrid III, either at the hip, or at the knee.
Technical Paper

Measured Vehicle Inertial Parameters-NHTSA’s Data Through November 1998

1999-03-01
1999-01-1336
This paper is primarily a printed listing of the National Highway Traffic Safety Administration’s (NHTSA) Light Vehicle Inertial Parameter Database. This database contains measured vehicle inertial parameters from SAE Paper 930897, “Measured Vehicle Inertial Parameters -NHTSA’s Data Through September 1992” (1), as well as parameters obtained by NHTSA since 1992. The proceeding paper contained 414 entries. This paper contains 82 new entries, for a total of 496. The majority of the entries contain complete vehicle inertial parameters, some of the entries contain tilt table results only, and some entries contain both inertia and tilt table results. This paper provides a brief discussion of the accuracy of inertial measurements. Also included are selected graphs of quantities listed in the database for some of the 1998 model year vehicles tested.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
Technical Paper

Computational Analysis of Head Impact Response Under Car Crash Loadings

1995-11-01
952718
Computational simulations are conducted for several head impact scenarios using a three dimensional finite element model of the human brain in conjunction with accelerometer data taken from crash test data. Accelerometer data from a 3-2-2-2 nine accelerometer array, located in the test dummy headpart, is processed to extract both rotational and translational velocity components at the headpart center of gravity with respect to inertial coordinates. The resulting generalized six degree-of-freedom description of headpart kinematics includes effects of all head impacts with the interior structure, and is used to characterize the momentum field and inertial loads which would be experienced by soft brain tissue under impact conditions. These kinematic descriptions are then applied to a finite element model of the brain to replicate dynamic loading for actual crash test conditions, and responses pertinent to brain injury are analyzed.
Technical Paper

Injury Severity in Restrained Children in Motor Vehicle Crashes

1995-11-01
952711
The paper reviews one hundred and three (103) cases of restrained children involved in motor vehicle crashes and admitted to the level I trauma center at Children's National Medical Center (CNMC). Thirty percent (30%) of these cases involved injuries with an Abbreviated InjuryScore (AIS) severity of 3 or greater. All cases are classified first by type of restraint system, i.e. infant seat, convertible seat, booster seat, lap belt, and lap and shoulder belt, and second, by type of injury sustained, i.e. head/face and neck, upper extremity, thorax, pelvic and abdominal, and lower extremity. The links between these classifications are examined to identify particular injury patterns associated with the use of individual restraint systems, e.g. the incidence of pelvic and abdominal injury associated with the use of both lap and lap and shoulder belts. For the severe injury cases the paper further examines the injury mechanisms for the most commonly observed patterns.
Technical Paper

A Review of Motor Vehicle Glazing-Related Ejection Injuries

1993-03-01
930740
A review was conducted of injuries associated with ejection through motor vehicle glazing, using the 1988 through 1991 National Accident Sampling System data maintained by the National Highway Traffic Safety Administration. The review indicated that one percent of the occupants in towaway crashes were ejected and that 22 percent of fatalities in towaway crashes were ejected. Fifty-three percent of complete ejections were through the glazing openings in motor vehicles. Current motor vehicle glazing does not contribute significantly to occupant injuries, but the effects of glazing changes on serious injuries will need to be considered.
X