Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Development of a Heavy-Duty Electric Vehicle Integration and Implementation (HEVII) Tool

2023-04-11
2023-01-0708
As demand for consumer electric vehicles (EVs) has drastically increased in recent years, manufacturers have been working to bring heavy-duty EVs to market to compete with Class 6-8 diesel-powered trucks. Many high-profile companies have committed to begin electrifying their fleet operations, but have yet to implement EVs at scale due to their limited range, long charging times, sparse charging infrastructure, and lack of data from in-use operation. Thus far, EVs have been disproportionately implemented by larger fleets with more resources. To aid fleet operators, it is imperative to develop tools to evaluate the electrification potential of heavy-duty fleets. However, commercially available tools, designed mostly for light-duty vehicles, are inadequate for making electrification recommendations tailored to a fleet of heavy-duty vehicles.
Technical Paper

Vehicle Powertrain Simulation Accuracy for Various Drive Cycle Frequencies and Upsampling Techniques

2023-04-11
2023-01-0345
As connected and automated vehicle technologies emerge and proliferate, lower frequency vehicle trajectory data is becoming more widely available. In some cases, entire fleets are streaming position, speed, and telemetry at sample rates of less than 10 seconds. This presents opportunities to apply powertrain simulators such as the National Renewable Energy Laboratory’s Future Automotive Systems Technology Simulator to model how advanced powertrain technologies would perform in the real world. However, connected vehicle data tends to be available at lower temporal frequencies than the 1-10 Hz trajectories that have typically been used for powertrain simulation. Higher frequency data, typically used for simulation, is costly to collect and store and therefore is often limited in density and geography. This paper explores the suitability of lower frequency, high availability, connected vehicle data for detailed powertrain simulation.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

Mobility Energy Productivity Evaluation of Prediction-Based Vehicle Powertrain Control Combined with Optimal Traffic Management

2022-03-29
2022-01-0141
Transportation vehicle and network system efficiency can be defined in two ways: 1) reduction of travel times across all the vehicles in the system, and 2) reduction in total energy consumed by all the vehicles in the system. The mechanisms to realize these efficiencies are treated as independent (i.e., vehicle and network domains) and, when combined, they have not been adequately studied to date. This research aims to integrate previously developed and published research on Predictive Optimal Energy Management Strategies (POEMS) and Intelligent Traffic Systems (ITS), to address the need for quantifying improvement in system efficiency resulting from simultaneous vehicle and network optimization. POEMS and ITS are partially independent methods which do not require each other to function but whose individual effectiveness may be affected by the presence of the other. In order to evaluate the system level efficiency improvements, the Mobility Energy Productivity (MEP) metric is used.
Technical Paper

High-Fidelity Heavy-Duty Vehicle Modeling Using Sparse Telematics Data

2022-03-29
2022-01-0527
Heavy-duty commercial vehicles consume a significant amount of energy due to their large size and mass, directly leading to vehicle operators prioritizing energy efficiency to reduce operational costs and comply with environmental regulations. One tool that can be used for the evaluation of energy efficiency in heavy-duty vehicles is the evaluation of energy efficiency using vehicle modeling and simulation. Simulation provides a path for energy efficiency improvement by allowing rapid experimentation of different vehicle characteristics on fuel consumption without the need for costly physical prototyping. The research presented in this paper focuses on using real-world, sparsely sampled telematics data from a large fleet of heavy-duty vehicles to create high-fidelity models for simulation. Samples in the telematics dataset are collected sporadically, resulting in sparse data with an infrequent and irregular sampling rate.
Journal Article

Safe Operations at Roadway Junctions - Design Principles from Automated Guideway Transit

2021-06-16
2021-01-1004
This paper describes a system-level view of a fully automated transit system comprising a fleet of automated vehicles (AVs) in driverless operation, each with an SAE level 4 Automated Driving System, along with its related safety infrastructure and other system equipment. This AV system-level control is compared to the automatic train control system used in automated guideway transit technology, particularly that of communications-based train control (CBTC). Drawing from the safety principles, analysis methods, and risk assessments of CBTC systems, comparable functional subsystem definitions are proposed for AV fleets in driverless operation. With the prospect of multiple AV fleets operating within a single automated mobility district, the criticality of protecting roadway junctions requires an approach like that of automated fixed-guideway transit systems, in which a guideway switch zone “interlocking” at each junction location deconflicts railway traffic, affirming safe passage.
Technical Paper

Real-World Driving Features for Identifying Intelligent Driver Model Parameters

2021-04-06
2021-01-0436
Driver behavior models play a significant role in representing different driving styles and the associated relationships with traffic patterns and vehicle energy consumption in simulation studies. The models often serve as a proxy for baseline human driving when assessing energy-saving strategies that alter vehicle velocity. Such models are especially important in connectivity-enabled energy-saving strategy research because they can easily adapt to changing driving conditions like posted speed limits or change in traffic light state. While numerous driver models exist, parametric driver models provide the flexibility required to represent variability in real-world driving through different combinations of model parameters. These model parameters must be informed by a representative set of parameter values for the driver model to adequately represent a real-world driver.
Technical Paper

Impacts of Biofuel Blending on MCCI Ignition Delay with Review of Methods for Defining Cycle-by-Cycle Ignition Points from Noisy Cylinder Pressure Data

2021-04-06
2021-01-0497
Conventional diesel combustion, also known as Mixing-Controlled Compression Ignition (MCCI), is expected to be the primary power source for medium- and heavy-duty vehicles for decades to come. Displacing petroleum-based ultra-low-sulfur diesel (ULSD) as much as possible with low-net-carbon biofuels will become necessary to help mitigate effects on climate change. Neat biofuels may have difficulty meeting current diesel fuel standards but blends of 30% biofuel in ULSD show potential as ‘drop-in’ fuels. These blends must not make significant changes to the combustion phasing of the MCCI process if they are to be used interchangeably with neat ULSD. An important aspect of MCCI phasing is the ignition delay (ID), i.e. the time between the start of fuel injection and the initial premixed autoignition that initiates the MCCI process.
Technical Paper

Decision Tree Regression to Identify Representative Road Sections for Evaluating Performance of Connected and Automated Class 8 Tractors

2021-04-06
2021-01-0187
Currently, connected and autonomous vehicle (CAV) technology is being developed for Class 8 tractor trucks aimed at improved safety and fuel economy and reduced CO2 emissions. Despite extensive efforts conducted across the world, the reported efficiency gains were varied from different research groups, raising concerns about the fidelity of models, the performance of control, and the effectiveness of the experimental validation. One root cause for this variation stems from the fact that the efficiency gain obtained from the CAV is sensitive to real-world conditions, including surrounding traffic and road grade. This study presents an approach aimed at identifying representative public road sections and facilitating CAV research from this perspective. By employing the decision tree regression (DTR) method to the Fleet DNA database, the most representative road sections can be identified.
Technical Paper

A Deterministic Multivariate Clustering Method for Drive Cycle Generation from In-Use Vehicle Data

2021-04-06
2021-01-0395
Accurately characterizing vehicle drive cycles plays a fundamental role in assessing the performance of new vehicle technologies. Repeatable, short duration representative drive cycles facilitate more informed decision making, resulting in improved test procedures and more successful vehicle designs. With continued growth in the deployment of onboard telematics systems employing global positioning systems (GPS), large scale, low cost collection of real-world vehicle drive cycle data has become a reality. As a result of these technological advances, researchers, designers, and engineers are no longer constrained by lack of operating data when developing and optimizing technology, but rather by resources available for testing and simulation. Experimental testing is expensive and time consuming, therefore the need exists for a fast and accurate means of generating representative cycles from large volumes of real-world driving data.
Technical Paper

Understanding the Charging Flexibility of Shared Automated Electric Vehicle Fleets

2020-04-14
2020-01-0941
The combined anticipated trends of vehicle sharing (ride-hailing), automated control, and powertrain electrification are poised to disrupt the current paradigm of predominately owner-driven gasoline vehicles with low levels of utilization. Shared, automated, electric vehicle (SAEV) fleets offer the potential for lower cost and emissions and have garnered significant interest among the research community. While promising, unmanaged operation of these fleets may lead to unintended negative consequences. One potentially unintended consequence is a high quantity of SAEVs charging during peak demand hours on the electric grid, potentially increasing the required generation capacity. This research explores the flexibility associated with charging loads demanded by SAEV fleets in response to servicing personal mobility travel demands. Travel demand is synthesized in four major United States metropolitan areas: Detroit, MI; Austin, TX; Washington, DC; and Miami, FL.
Technical Paper

Heterogeneous Machine Learning on High Performance Computing for End to End Driving of Autonomous Vehicles

2020-04-14
2020-01-0739
Current artificial intelligence techniques for end to end driving of autonomous vehicles typically rely on a single form of learning or training processes along with a corresponding dataset or simulation environment. Relatively speaking, success has been shown for a variety of learning modalities in which it can be shown that the machine can successfully “drive” a vehicle. However, the realm of real-world driving extends significantly beyond the realm of limited test environments for machine training. This creates an enormous gap in capability between these two realms. With their superior neural network structures and learning capabilities, humans can be easily trained within a short period of time to proceed from limited test environments to real world driving.
Technical Paper

Corroborative Evaluation of the Real-World Energy Saving Potentials of InfoRich Eco-Autonomous Driving (iREAD) System

2020-04-14
2020-01-0588
There has been an increasing interest in exploring the potential to reduce energy consumption of future connected and automated vehicles. People have extensively studied various eco-driving implementations that leverage preview information provided by on-board sensors and connectivity, as well as the control authority enabled by automation. Quantitative real-world evaluation of eco-driving benefits is a challenging task. The standard regulatory driving cycles used for measuring exhaust emissions and fuel economy are not truly representative of real-world driving, nor for capturing how connectivity and automation might influence driving trajectories. To adequately consider real-world driving behavior and potential “off-cycle” impacts, this paper presents four collaborative evaluation methods: large-scale simulation, in-depth simulation, vehicle-in-the-loop testing, and vehicle road testing.
Journal Article

RouteE: A Vehicle Energy Consumption Prediction Engine

2020-04-14
2020-01-0939
The emergence of connected and automated vehicles and smart cities technologies create the opportunity for new mobility modes and routing decision tools, among many others. To achieve maximum mobility and minimum energy consumption, it is critical to understand the energy cost of decisions and optimize accordingly. The Route Energy prediction model (RouteE) enables accurate estimation of energy consumption for a variety of vehicle types over trips or sub-trips where detailed drive cycle data are unavailable. Applications include vehicle route selection, energy accounting and optimization in transportation simulation, and corridor energy analyses, among others. The software is a Python package that includes a variety of pre-trained models from the National Renewable Energy Laboratory (NREL). However, RouteE also enables users to train custom models using their own data sets, making it a robust and valuable tool for both fast calculations and rigorous, data-rich research efforts.
Journal Article

Development and Demonstration of a Class 6 Range-Extended Electric Vehicle for Commercial Pickup and Delivery Operation

2020-04-14
2020-01-0848
Range-extended hybrids are an attractive option for medium- and heavy-duty commercial vehicle fleets because they offer the efficiency of an electrified powertrain with the driving range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture. Under a U.S. Department of Energy (DOE)-funded project for Medium- and Heavy-Duty Vehicle Powertrain Electrification, Cummins has developed a plug-in hybrid electric Class 6 truck with a range-extending engine designed for pickup and delivery application.
Technical Paper

Feasibility Analysis of Taxi Fleet Electrification using 4.9 Million Miles of Real-World Driving Data

2019-04-02
2019-01-0392
Ride hailing activity is rapidly increasing, largely due to the growth of transportation network companies such as Uber and Lyft. However, traditional taxi companies continue to represent an important mobility option for travelers. Columbus Yellow Cab, a taxi company in Columbus, Ohio, offers traditional line-of-sight hailing as well as digital hailing through a mobile app. Data from Columbus Yellow Cab was provided to the National Renewable Energy Laboratory to analyze the potential for taxi electrification. Columbus Yellow Cab data contained information describing both global positioning system trajectories and taxi meter information. The data spanned a period of 13 months, containing approximately 70 million global system positioning system points, 840 thousand trips, and 170 unique vehicles.
Technical Paper

Heat of Vaporization and Species Evolution during Gasoline Evaporation Measured by DSC/TGA/MS for Blends of C1 to C4 Alcohols in Commercial Gasoline Blendstocks

2019-01-15
2019-01-0014
Evaporative cooling of the fuel-air charge by fuel evaporation is an important feature of direct-injection spark-ignition engines that improves fuel knock resistance and reduces pumping losses at intermediate load, but in some cases, may increase fine particle emissions. We have reported on experimental approaches for measuring both total heat of vaporization and examination of the evaporative heat effect as a function of fraction evaporated for gasolines and ethanol blends. In this paper, we extend this work to include other low-molecular-weight alcohols and present results on species evolution during fuel evaporation by coupling a mass spectrometer to our differential scanning calorimetry/thermogravimetric analysis instrument. The alcohols examined were methanol, ethanol, 1-propanol, isopropanol, 2-butanol, and isobutanol at 10 volume percent, 20 volume percent, and 30 volume percent.
Technical Paper

Range Extension Opportunities While Heating a Battery Electric Vehicle

2018-04-03
2018-01-0066
The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination [1]. The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermal storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 °C to −18 °C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.
Technical Paper

Analysis of Fast Charging Station Network for Electrified Ride-Hailing Services

2018-04-03
2018-01-0667
Today’s electric vehicle (EV) owners charge their vehicles mostly at home and seldom use public direct current fast charger (DCFCs), reducing the need for a large deployment of DCFCs for private EV owners. However, due to the emerging interest among transportation network companies to operate EVs in their fleet, there is great potential for DCFCs to be highly utilized and become economically feasible in the future. This paper describes a heuristic algorithm to emulate operation of EVs within a hypothetical transportation network company fleet using a large global positioning system data set from Columbus, Ohio. DCFC requirements supporting operation of EVs are estimated using the Electric Vehicle Infrastructure Projection tool. Operation and installation costs were estimated using real-world data to assess the economic feasibility of the recommended fast charging stations.
Technical Paper

Leveraging Big Data Analysis Techniques for U.S. Vocational Vehicle Drive Cycle Characterization, Segmentation, and Development

2018-04-03
2018-01-1199
Under a collaborative interagency agreement between the U.S. Environmental Protection Agency and the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) performed a series of in-depth analyses to characterize on-road driving behavior including distributions of vehicle speed, idle time, accelerations and decelerations, and other driving metrics of medium- and heavy-duty vocational vehicles operating within the United States. As part of this effort, NREL researchers segmented U.S. medium- and heavy-duty vocational vehicle driving characteristics into three distinct operating groups or clusters using real-world drive cycle data collected at 1 Hz and stored in NREL’s Fleet DNA database. The Fleet DNA database contains millions of miles of historical drive cycle data captured from medium- and heavy-duty vehicles operating across the United States. The data encompass existing DOE activities as well as contributions from valued industry stakeholder participants.
X