Refine Your Search

Topic

Search Results

Viewing 1 to 9 of 9
Technical Paper

Update on A-Pillar Overflow Simulation

2018-04-03
2018-01-0717
The management of surface water flows driven from the wind screen by the action of wipers and aerodynamic shear is a growing challenge for automotive manufacturers. Pressure to remove traditional vehicle features, such as A-Pillar steps for aesthetic, aeroacoustic and aerodynamic reasons increases the likelihood that surface water may be convected over the A-Pillar and onto the front side glass where it can compromise drivers’ vision. The ability to predict where and under which conditions the A-Pillar will be breached is important for making correct design decisions. The use of numerical simulation in this context is desirable, as experimental testing relies on the use of aerodynamics test properties which will not be fully representative, or late-stage prototypes, making it difficult and costly to correct issues. This paper provides an update on the ability of simulation to predict A-Pillar overflow, comparing physical and numerical results for a test vehicle.
Technical Paper

Simulation-Driven Process to Evaluate Vehicle Integration Aspects in Brake Thermal Design

2017-05-24
2017-36-0011
Thermal performance of a brake system is one of the key attributes in a new vehicle development process. Adequate brake cooling characteristics are part of the vehicle performance and safety requirements. The design of a new brake system, however, can be a complex task from a thermal engineering perspective, particularly because of complex interactions between the brake component and the rest of the vehicle. Frequently, the vehicle integration issues are the most serious challenges for brake engineers. There are considerations on how much heat should be dissipated from a single and/or consecutive braking events vs. how much cooling can be provided to the brake corner. Design issues such as where to direct the cooling air to how much flexibility is allowed while complying with other requirements from the studio and aero teams. For a brake engineer, the priority is to maximize cooling to the brake corner and prevent system failure.
Journal Article

From Exterior Wind Noise Loads to Interior Cabin Noise: A Validation Study of a Generic Automotive Vehicle

2015-06-15
2015-01-2328
The object of the validation study presented in this paper is a generic vehicle, the so-called SAE body, developed by a consortium of German car manufacturers (Audi, Daimler, Porsche, Volkswagen). Many experiments have been performed by the abovementioned consortium on this object in the past to investigate its behavior when exposed to fluid flow. Some of these experiments were used to validate the simulation results discussed in the present paper. It is demonstrated that the simulation of the exterior flow is able to represent the transient hydrodynamic structures and at the same time both the generation of the acoustic sources and the propagation of the acoustic waves. Performing wave number filtering allows to identify the acoustic phenomena and separate them from the hydrodynamic effects. In a next step, the noise transferred to the interior of the cabin through the glass panel was calculated, using a Statistical Energy Analysis approach.
Journal Article

Recent Experimental and Simulation Efforts to Mitigate Wobble and Shimmy in Commercial Line Haul Vehicles

2014-09-30
2014-01-2314
Wobble and shimmy vibrations are commonly observed in commercial highway vehicles with solid-beam front axles. These vibrations are typically self-excited and manifest themselves as sustained oscillations about the kingpin and axle tramp. A study was initiated to investigate and quantify wobble and shimmy behaviors, with a primary focus on wobble. A cross functional team including test and simulation engineers evaluated a vehicle exhibiting these behaviors. The team developed an ADAMS model to reproduce the behaviors and developed a DOE to quantify the impact of variables and combinations of variables. The evaluation demonstrated that dynamic imbalance in the rotating masses is a primary source of excitation. Wheel run-out, caster angle, tire brand, tire wear and tire inflation are also significant sources. Future studies will use these findings to mitigate the concern.
Technical Paper

A Computational Aeroacoustic Study of Windshield Wiper Influence on Passenger Vehicle Greenhouse Windnoise

2014-06-30
2014-01-2051
This paper presents an approach to numerically simulate greenhouse windnoise. The term “greenhouse windnoise” here describes the sound transferred to the interior through the glass panels of a series vehicle. Different panels, e.g. the windshield or sideglass, are contributing to the overall noise level. Attached parts as mirrors or wipers are affecting the flow around the vehicle and thus the pressure fluctuations which are acting as loads onto the panels. Especially the wiper influence and the effect of different wiper positions onto the windshield contribution is examined and set in context with the overall noise levels and other contributors. In addition, the effect of different flow yaw angles on the windnoise level in general and the wiper contributions in particular are demonstrated. As computational aeroacoustics requires accurate, highly resolved simulation of transient and compressible flow, a Lattice-Boltzmann approach is used.
Book

Glass Engineering: Design Solutions for Automotive Applications

2014-04-07
The art and science of glass engineering, specifically applied to automotive projects, are not at all commonplace. Although windshields, side and backlites seem to be obvious parts of any car, truck, or bus, designing, sourcing, and manufacturing them are unique challenges. From the business perspective, cost control makes the choice of the ideal supplier a vital decision, greatly impacting availability and production. From the technical standpoint, the most creative designs can be rendered impractical due to regulations, lack of economies of scale, or convoluted logistics. Glass Engineering: Design Solutions for Automotive Applications tackles all these variables using a no-nonsense, step-by-step approach. Written by Lyn R. Zbinden, a mechanical engineer and glass specialist, this book narrows the gap between the reader and a technical subject by using language that is easy to understand, a good variety of examples, and a series of invaluable reference design tables.
Journal Article

A Computational Process for Early Stage Assessment of Automotive Buffeting and Wind Noise

2013-05-13
2013-01-1929
A computational process for early stage vehicle shape assessment for automotive front window buffeting and greenhouse wind noise is presented. It is a challenging problem in an experimental process as the vehicle geometry is not always finalized. For example, the buffeting behavior typically worsens during the vehicle development process as the vehicle gets tighter, leading to expensive late counter measures. We present a solution using previously validated CFD/CAA software based on the Lattice Boltzmann Method (LBM). A CAD model with realistic automotive geometry was chosen to simultaneously study the potential of different side mirror geometries to influence the front window buffeting and greenhouse wind noise phenomena. A glass mounted mirror and a door mounted mirror were used for this comparative study. Interior noise is investigated for the two phenomena studied. The unsteady flow is visualized and changes in the buffeting and wind noise behavior are explored.
Journal Article

Modelling A-Pillar Water Overflow: Developing CFD and Experimental Methods

2012-04-16
2012-01-0588
Water accumulating on a vehicle's wind screen, driven over the A-pillar by a combination of aerodynamic forces and the action of the windscreen wipers, can be a significant impediment to driver vision. Surface water film, or streams, persisting in key vision areas of the side glass can impair the drivers' ability to see clearly through to the door mirror, and laterally onto junctions. Common countermeasures include: water management channels and hydrophobic glass coatings. Water management channels have both design and wind noise implications. Hydrophobic coatings entail significant cost. In order to manage this design optimisation issue a water film and wiper effect model has been developed in collaboration with Jaguar Land Rover, extending the capabilities of the PowerFLOW CFD software. This is complimented by a wind-tunnel based test method for development and validation. The paper presents the progress made to date.
Technical Paper

Dynamic Analysis of Snow Falling from Roof of Cab on Cowl Tray with Equation of State Defined for Snow

2010-10-05
2010-01-1914
This paper talks about using an approach to simulate snow mass falling from roof of cab on the cowl tray of a commercial truck and predicting the durability life of the cowl tray based on this loading. It has always been a challenge for analysts to model the behavior of snow/slurry in dynamic simulations especially where the area of concern is structure and not the fluid. The conventional approach followed in most industries would be either to model snow as soft rubber or to divert from the conventional Lagrangian algorithm for mesh movement towards Eulerian method (or ALE algorithm). Although modeling snow as soft rubber captures the basic physics of the problem, it is not able to correctly simulate the fluid structure interaction behavior and the pressure wave movement inside the snow/slurry when it comes in contact with the structure.
X