Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of Regenerative Cooperative Braking System with Conventional ESC

2014-04-01
2014-01-0331
HEV and EV markets are in a rapid expansion tendency. Development of low-cost regenerative cooperation brake system is needed in order to respond to the consumers needs for HEV and EV. Regenerative cooperation brake system which HEV and EV are generally equipped with has stroke simulator. We developed simple composition brake system based on the conventional ESC unit without the stroke simulator, and our system realized a low-cost regenerative cooperation brake. The key technologies are the quiet pressurization control which can be used in the service application, which is to make brake force depending on brake travel, by gear pump and the master cylinder with idle stroke to realize regenerative cooperation brake. Thanks to the key technologies, both the high regenerative efficiency and the good service brake feeling were achieved.
Technical Paper

Study on Miniaturization of an Air-Cooled Inverter Integrated with Motor

2014-04-01
2014-01-1872
This paper reports about a trial for miniaturization of an air-cooled inverter integrated with motor, which is realized by reduction of the total volume of smoothing capacitor. An integrated system prototype was constructed with a disk-shaped inverter positioned at the rear end of the motor. We examined the possibility of using a ceramic capacitor, which features a higher heat-resistance temperature, lower internal resistance and higher capacity density than a film capacitor. At the same level of capacitance, the volume of a ceramic capacitor is less than one-half that of a film capacitor, enabling the size of the smoothing capacitor to be reduced to approximately one-fifth that of the currently used device. A suitable circuit configuration and physical layout of distributed smoothing capacitors and corresponding power device modules are proposed and demonstrated.
Video

Technical Breakthroughs in Development of a Single Motor Full Hybrid System

2011-11-18
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Technical Paper

Development of Nissan Approaching Vehicle Sound for Pedestrians: How to solve the trade off between Quietness and Pedestrian safty of the Electric vehicles?

2011-05-17
2011-39-7231
Electric Vehicles are very quiet at low speeds therefore people (especially the visually impaired) have difficulty recognizing that these vehicles are approaching. To address this concern, Approaching Vehicle Sound for Pedestrians system development has been discussed worldwide. In Japan, USA, Europe and China, government regulation is currently under study. As a solution to meet this concern, Nissan has developed the VSP (Approaching Vehicle Sound for Pedestrians) system for implementation on Nissan's first mass production Electric Vehicle. Nissan VSP emits a futuristic sound to satisfy 3 key stakeholders' concerns; for pedestrians to provide detectability, for drivers and neighborhoods to maintain a quiet environment. The sound emitted during forward motion has a “twin peaks and one dip” frequency signature, with modulation (or rhythmic structure) to accommodate human-beings ear frequency sensitivity, hearing loss due to aging and ambient noise conditions.
Technical Paper

DEVELOPMENT OF CRASH SAFETY OF THE NEWLY DEVELOPED ELECTRIC VEHICLE

2011-05-17
2011-39-7232
An electric vehicle (EV) is promising as clean energy powered vehicle, due to increased interest in fuel economy and environment in recent years. However, it requires to meet unique safety performance such as electric safety. Nissan has developed a new electric vehicle which achieves electric safety in addition to maintaining enough cruising distance and cabin space. This was achieved by I he development of an all-new platform for electric vehicles. The electric safety was enhanced by the protection of high-voltage components based on consideration of component layout and body structure, high-voltage shutdown by impact sensing system and prevention of short circuit by fuse in the battery. As an example of the protection of high-voltage components, the battery which locates under the floor was protected by elaborative packaging and multi-layer protection structure.
Technical Paper

DEVELOPMENT OF MOTOR AND INVERTER FOR RWD HYBRID VEHICLES

2011-05-17
2011-39-7239
At Nissan we have developed a new parallel hybrid system for rear-wheel-drive hybrid vehicles. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to be within the length allowed for the powertrain. Therefore, new technologies have been developed such as high-density, square-shaped windings and an optimized magnetic circuit specially designed for concentrated winding motors. The inverter is sized to a 12V battery, which it replaces in the engine compartment. Despite its compact size, the inverter must have rather large current capacity to drive a high-power motor. Heat management is critical to the design of a small but high-power inverter.
Technical Paper

Development of an Electrically-Driven Intelligent Brake System for EV

2011-05-17
2011-39-7211
This paper presents the electrically driven intelligent brake system that has been developed for electric vehicles, which are expected to penetrate markets rapidly amid the ongoing energy paradigm shift. This brake system achieves a cooperative energy regeneration function and high responsiveness while providing braking performance, system reliability and vehicle mounting ease equal to that of conventional brake systems with a vacuum booster. This paper outlines the newly developed brake system and describes how to decide the target brake force which is achieved a regenerative braking capability for recovering energy efficiently without sacrificing braking.
Journal Article

Development of a Parallel Hybrid System for RWD Vehicles

2011-04-12
2011-01-0884
In December 2006, Nissan announced its Nissan Green Program 2010 (NGP 2010), a mid-term environmental action plan that includes initiatives to reduce vehicle emissions. In line with this plan, the company intends to introduce a new and original hybrid system in fiscal year 2010. Specifically, this system-called the “Infiniti Direct Response Hybrid”-is a one-motor, two-clutch parallel hybrid system that eliminates the need for a torque converter. It will be featured in the 2012 Infiniti M35 Hybrid and provides the following advantages. 1 Significant improvement in fuel economy even in Highway driving 2 Better response and a more direct feeling 3 Lightweight and low cost This one-motor, two-clutch system without torque converter possesses a simple but highly capable architecture that is new to the passenger vehicle segment.
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Technical Paper

Development of an Electrically-Driven Intelligent Brake Unit

2011-04-12
2011-01-0572
An electrically-driven, intelligent brake unit has been developed, to be combined with a regenerative braking system in electric vehicles (EVs) and hybrid electric vehicles (HEVs) which went into production in 2010 - 11. The brake pedal force is assisted by an electrically driven motor, without using vacuum pressure, unlike conventional braking systems. The actuator can be implemented to coordinate with a regenerative braking system, and to have adjustable pedal feel through use of a unique pressure-generating mechanism and a pedal-force compensator. In this paper, we describe features of the actuator mechanism and performance test results
Technical Paper

Challenges of Widespread Marketplace Acceptance of Electric Vehicles -- Towards a Zero-Emission Mobility Society

2010-10-19
2010-01-2312
Curbing emissions of carbon dioxide (CO₂), which is believed by many scientists to be a major contributor to global warming, is one of the top priority issues that must be addressed by automobile manufacturers. Automakers have set their own strategies to improve fuel economy and to reduce CO₂ emissions. Some of them include integrated approaches, focusing on not only improvement of vehicle technology, but also human factors (eco-driving support for drivers) and social and transportation factors (traffic management by intelligent transportation systems [ITS]). Among them, electric vehicles (EVs) will be a key contributor to attaining the challenging goal of CO₂ reduction. Mass deployment of EVs is required to achieve a zero-emission society. To accomplish that, new advanced technologies, new business schemes, and new partnerships are required.
Technical Paper

Research on Large Capacity, High Power Lithium-ion Batteries

2009-04-20
2009-01-1389
Aiming for an environmental vehicle, since the 1990s we have narrowed our focus to the development of an exclusive use lithium-ion battery, and we have strongly advanced our examinations into high-performance power supply systems. In order to adapt a battery to meet vehicle requirements, it is necessary to more accurately predict battery performance, and have the ability to design it. For example, in the applicability to HEVs(Hybrid Electric Vehicles), ensuring battery power with certainty is required, but in order to improve battery power, the basic process that occurs inside the battery was restrained, so it is possible that the quantitative analytical approach is the necessary fundamental technology.
Technical Paper

Research and Development Work on High-performance Lithium-ion Batteries for EV Application

2008-04-14
2008-01-1332
From the beginning of the 1990s, we have been vigorously investigating a high-performance power source system for application to environmental vehicles, focusing our research and development efforts specifically on lithium-ion batteries. In order to adapt a battery system to the requirements of the target vehicle, battery performance must be predicted and designed more accurately. In the case of hybrid electric vehicles, for example, battery power must be reliably assured. Improving battery power requires quantitative analytical methods as fundamental techniques for understanding the basic processes that take place in a battery. From this perspective, we began constructing a battery simulation model from scratch in the middle of the 1990s concurrently with our battery R&D activities. The model simulates electrode reactions and charge transport and has been used in investigating the influence of these factors on battery performance.
Technical Paper

Investigations of Compatibility of ETBE Gasoline with Current Gasoline Vehicles

2006-10-16
2006-01-3381
Clarifying the impact of ETBE 8% blended fuel on current Japanese gasoline vehicles, under the Japan Clean Air Program II (JCAPII) we conducted exhaust emission tests, evaporative emission tests, durability tests on the exhaust after-treatment system, cold starting tests, and material immersion tests. ETBE 17% blended fuel was also investigated as a reference. The regulated exhaust emissions (CO, HC, and NOx) didn't increase with any increase of ETBE content in the fuel. In durability tests, no noticeable increase of exhaust emission after 40,000km was observed. In evaporative emissions tests, HSL (Hot Soak Loss) and DBL (Diurnal Breathing Loss) didn't increase. In cold starting tests, duration of cranking using ETBE 8% fuel was similar to that of ETBE 0%. In the material immersion tests, no influence of ETBE on these material properties was observed.
Technical Paper

Research on a Braking System for Reducing Collision Speed

2003-03-03
2003-01-0251
An investigation was made of the relationship between the driving speed at the time of impact and the injury levels suffered in accidents. The results showed that a 5 km/h or more reduction in collision speed tends to mitigate injury severity. Using sensors and brake actuators already in practical use, we have started to research a braking system aimed at reducing the collision speed by at least 5 km/h in rear-end collisions. The system estimates the risk of a collision with the vehicle ahead. If it judges there is a very high possibility of a collision, it applies the brakes.
Technical Paper

A Study of a Telematics Communication Method Involving Switching Signals to Voice and Data Lines

2003-03-03
2003-01-0132
This paper proposes a new voice and data wireless communication method for telematics services. Data-voice (DV) modems have conventionally been used for simultaneous transmission of voice and data. With this method, however, one line is split between the data part and voice part. Lost data are retransmitted, but the voice signal is not resent because voice communication requires a real-time characteristic. The new voice and data wireless communication method proposed here switches voice to a voice line and data to a data line.
Technical Paper

Usability Evaluation of Integrated Switch System

2002-03-04
2002-01-0085
This paper describes an integrated switch system by which the audio control system, air-conditioner control system and navigation control system can be operated with a smaller number of switches. This system resolves several issues resulting from the incorporation of information technology into vehicles, including the increased visual load due to the greater amount of information presented and the poorer operability resulting from increased functionality. A usability evaluation was conducted and the results indicated that the integrated switch system can reduce visual load.
Technical Paper

Research on a brake assist system with a preview function

2001-06-04
2001-06-0209
Traffic accidents in Japan claim some 10,000 precious lives every year, and there is seemingly no end to the problem. In an effort to overcome this situation, vehicle manufacturers have been pushing ahead with the development of a variety of advanced safety technologies. Joint public- private sector projects related to Intelligent Transport Systems (ITS) are also proceeding vigorously. Most accidents can be attributed to driver error in recognition, judgment or vehicle operation. This paper presents an analysis of driver behavior characteristics in emergency situations that lead to an accident, focusing in particular on operation of the brake pedal. Based on the insights gained so far, we have developed a Brake Assist System with a Preview Function (BAP) designed to prevent accidents by helping drivers with braking actions. Experimental results have confirmed that BAP is effective in reducing the impact speed and the frequency of accidents in emergency situations.
Technical Paper

Research on a Brake Assist System with a Preview Function

2001-03-05
2001-01-0357
Traffic accidents in Japan claim some 10,000 precious lives every year, and there is seemingly no end to the problem. In an effort to overcome this situation, vehicle manufacturers have been pushing ahead with the development of a variety of advanced safety technologies. Joint public-private sector projects related to Intelligent Transport Systems (ITS) are also proceeding vigorously. Most accidents can be attributed to driver error in recognition, judgment or vehicle operation. This paper presents an analysis of driver behavior characteristics in emergency situations that lead to an accident, focusing in particular on operation of the brake pedal. Based on the insights gained so far, we have developed a Brake Assist System with a Preview Function (BAP) designed to prevent accidents by helping drivers with braking actions. Experimental results have confirmed that BAP is effective in reducing the impact speed and the frequency of accidents in emergency situations.
Technical Paper

Engine Application of a Battery Voltage-Driven DI Fuel Injection System

2001-03-05
2001-01-0986
Every fuel injection system for DI gasoline engines has a DC-DC converter to provide high, stabile voltage for opening the injector valve more quickly. A current control circuit for holding the valve open is also needed, as well as a large-capacity capacitor for pilot injection. Since these components occupy considerable space, an injector drive unit separate from the ECU must be used. Thus, there has been a need for a fuel injection system that can inject a small volume of fuel without requiring high voltage. To meet that need, we have developed a dual coil injector and an opening coil current control system. An investigation was also made of all the factors related to the dynamic range of the injector, including static flow rate, fuel pressure, battery voltage and harness resistance. Both efforts have led to the adoption of a battery voltage-driven fuel injector.
X