Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Technical Paper

Evaluation of Equivalent Temperature in a Vehicle Cabin with a Numerical Thermal Manikin (Part 1): Measurement of Equivalent Temperature in a Vehicle Cabin and Development of a Numerical Thermal Manikin

2019-04-02
2019-01-0697
The present paper is Part 1 of two consecutive studies. Part 1 describes three subjects: definition of the equivalent temperature (teq), measurements of teq using a clothed thermal manikin in a vehicle cabin, and modeling of the clothed thermal manikin for teq simulation. After defining teq, a method for measuring teq with a clothed thermal manikin was examined. Two techniques were proposed in this study: the definition of “the total heat transfer coefficient between the skin surface and the environment in a standard environment (hcal)” based on the thermal insulation of clothing (Icl), and a method of measuring Icl in consideration of the area factor (fcl), which indicates the ratio of the clothing surface to the manikin surface area. Then, teq was measured in an actual vehicle cabin by the proposed method under two conditions: a summer cooling condition with solar radiation and a winter heating condition without solar radiation.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
Journal Article

Silicon Carbide Inverter for EV/HEV Application featuring a Low Thermal Resistance Module and a Noise Reduction Structure

2017-03-28
2017-01-1669
This paper presents the technologies incorporated in an electric vehicle (EV)/hybrid electric vehicle (HEV) inverter built with power semiconductors of silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) instead of conventional silicon (Si) insulated gate bipolar transistors (IGBTs). A SiC inverter prototype of 2.9 L in size for driving an 80-kW motor was fabricated and evaluated on a motor test bench. The SiC inverter prototype attained average efficiency of 98.5% in the Worldwide harmonized Light-duty Test Cycle (WLTC) driving mode. The two main technologies achieved with this SiC inverter prototype are described. The first one is a new direct-cooled power module with a thick copper (Cu) heat spreader located under the semiconductors that improves thermal resistance by 34% compared with a conventional direct-cooled power module.
Technical Paper

Development of GF-5 0W-20 Fuel-Saving Engine Oil for DLC-Coated Valve Lifters

2014-04-01
2014-01-1478
A suitable GF-5 engine oil formulation is investigated to improve the fuel economy of gasoline engines with hydrogen-free DLC-coated valve lifters. Molybdenum dithocarbamate (MoDTC) is shown to be a suitable friction modifier for low viscosity grade engine oils like 0W-20. A suitable Ca salicylate detergent is also determined from several types examined for maximizing the friction reduction effects of MoDTC. The most suitable Ca salicylate has a chemical structure capable of forming a borophosphate glass film on metal surfaces, which is known to improve the effects of MoDTC. A high viscosity index Group III base oil (VI>140) is also effective in improving fuel efficiency. It is further clarified that the structural design of the polymethacrylate viscosity modifier is another important factor in reducing engine friction.
Technical Paper

Application Development of Low Carbon Type Dual Phase 980MPa High Strength Steel

2006-04-03
2006-01-1586
Use of high strength steel (HSS) could be an important consideration in achieving competitive weight and safety performance of the body-in-white (BIW). This study covers key technical issues in the application development. Many aspects were studied such as formability, weldability and impact strength for application of this grade to the BIW. One of the key issues is spot weldability, especially in the assembly of heavy gauge materials for structural parts. The spot weld strength appears not to satisfy the target for some HSS applications, when hardness of the nugget is high. The relation between weld strength and the chemical composition of steel sheets was studied, because hardness can be controlled by chemical composition and welding conditions. It was found that using lower carbon content or carbon equivalent compared to conventional grades could improve weld strength.
Technical Paper

Development of Transient Knock Prediction Technique by Using a Zero-Dimensional Knocking Simulation with Chemical Kinetics

2004-03-08
2004-01-0618
A transient knock prediction technique has been developed by coupling a zero-dimensional knocking simulation with chemical kinetics and a one-dimensional gas exchange engine model to study the occurrence of transient knock in SI engines. A mixed chemical reaction mechanism of the primary reference fuels was implemented in the two-zone combustion chamber model as the auto-ignition model of the end-gas. An empirical correlation between end-gas auto-ignition and knock intensity obtained through intensive analysis of experimental data has been applied to the knocking simulation with the aim of obtaining better prediction accuracy. The results of calculations made under various engine operating parameters show good agreement with experimental data for trace knock sensitivity to spark advance.
Technical Paper

Development of Pitting Resistant Steel for Transmission Gears

2001-03-05
2001-01-0827
It was found that pitting resistance of gears is strongly influenced by resistance to temper softening of carburized steel. The investigation about the influence of chemical compositions on hardness after tempering revealed that silicon, chromium and molybdenum are effective elements to improve resistance to temper softening and pitting resistance. Considering the production of gears, molybdenum is unfavorable because it increases hardness of normalized or annealed condition. Developed new steel contains about 0.5 mass% of silicon and 2.7 mass% chromium. The new steel has excellent pitting resistance and wear resistance. Fatigue and impact strength are equivalent to conventional carburized steels. Cold-formability and machinability of the new steel are adequate for manufacturing gears because of its ordinary hardness before carburizing. The new steel has already been put to practical use in automatic transmission gears. Application test results are also reported.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Technical Paper

Analysis of Bumper Paint Removal and Development of Paint Removal Equipment

2000-03-06
2000-01-0740
This paper deals with the development of plastics recycling technology, which is one key to resolving environmental and natural resource problems and encouraging recycling activities. Bumpers are among the heaviest plastic auto parts, so the technology for recycling bumpers is strongly required. Paint remaining on bumpers causes the strength of the recycled material to decline and degrades its surface quality. Therefore, unless the paint is removed, it is impossible to use recycled material to manufacture new bumpers. This hampers recycling efforts and results in low-value recycled material. Consequently, it is essential to develop a simple paint removing without chemical substances for practical plastics recycling at low cost. Two topics are discussed in this paper. The first concerns the mechanism of paint removal and the development of a technique for utilizing that mechanism.
Technical Paper

New Copper Alloy Powder for Laser-Clad Valve Seat Used in Aluminum Cylinder Heads

2000-03-06
2000-01-0396
A copper alloy powder composed of Cu-14Ni-3Si-2V-2Cr-1.5Fe-1Al-0.5P has been developed for application to laser-clad valve seats. Laser-clad valve seats offer several advantages such as higher engine output and improved fuel economy owing to lower valve head temperature and an increased intake throat diameter compared with conventional press-fit valve inserts made of ferro-based powder metal. Previously, a material having a principal chemical composition of Cu-12Ni-10Co-3Si-2V-2Nb-1.5Fe-1Al was developed to obtain large hard intermetallic compounds. The microstructure of this material is formed by a two-liquid separation reaction, which has been applied to powders of different chemical compositions for laser-clad valve seats of production engines. Although this material shows superior valve seat wear resistance, it has certain drawbacks, including the high cost of the powder, high probability of microcrack formation and low machinability of the laser-clad layer.
Technical Paper

Development of a Technique for Using Oil Viscosity to Reduce Noise Radiated from the Oil Pan

1999-05-17
1999-01-1759
We have developed a vibration damping technique for the Oil Pan to reduce radiation noise. This technique makes use of oil viscosity. To increase vibration damping of oil pan, we use oil viscosity by forming a thin oil film between the oil pan bottom and an added inner plate. This paper presents the results of vibration tests that were conducted to study the oil damping mechanism and results of applying to a small high-speed diesel engine.
Technical Paper

Development of a Wear Resistant Aluminum Alloy for Automotive Components

1999-03-01
1999-01-0350
Hypereutectic Al-Si alloy 390, containing large amounts of hard silicon particles, has mainly been used for wear-resistant alloy applications. In the case of hypereutectic Al-Si alloys, the primary silicon particle size and distribution must be controlled to obtain stable wear resistance. The service life of furnaces and molds is shortened by the high melting and casting temperatures required for controlling primary silicon. Furthermore, machinability is degraded by large primary silicon particles. To overcome these problems, a new wear-resistant Al-Si alloy has been developed which provides good castability and machinability. This alloy also has wear resistance and mechanical properties similar to those of the 390 alloy. Specifically, the problems regarding castability and machinability were solved by decreasing the silicon content of the 390 alloy, but that also reduced wear resistance.
Technical Paper

The Development of a High Speed Steel Based Sintered Material for High Performance Exhaust Valve Seat Inserts

1998-02-23
980328
The demands on valve seat insert materials, in terms of providing greater wear-resistance at higher temperatures, enhanced machinability and using non-environmentally hazardous materials at a reasonably low cost have intensified in recent years. Due therefore to these strong demands in the market, research was made into the possibility of producing a new valve seat insert material. As a result a high speed steel based new improved material was developed, which satisfies the necessary required demands and the evaluation trials, using actual gasoline engine endurance tests, were found to be very successful.
Technical Paper

Development of a New Compound Fuel and Fluorescent Tracer Combination for Use with Laser Induced Fluorescence

1995-10-01
952465
Laser induced fluorescence (LIF) is a useful method for visualizing the distribution of the air-fuel ratio in the combustion chamber. The way this method is applied mainly depends on the fluorescent tracer used, such as biacetyl, toluene, various aldehydes, fluoranthene or diethylketone, among others. Gasoline strongly absorbs light in the UV region, for example, at the 248-nm wavelength of broadband KrF excimer laser radiation. Therefore, when using this type of laser, iso-octane is employed as the fuel because it is transparent to 248-nm UV light. However, since the distillation curves of iso-octane and gasoline are different, it can be expected that their vaporization characteristics in the intake port and cylinder would also be different. The aim of this study was to find a better fuel for use with LIF at a broadband wavelength of 248 nm. Three tasks were undertaken in this study.
Technical Paper

Front-End Airflow Rate Simulation

1988-11-01
881748
Front-end airflow predictions are generally carried out at the styling stage in the development process for vehicle cooling systems. These predictions have taken on increasing importance in recent years in studying the heat radiation capacities of the radiator. This paper presents a method for simulating front-end airflow rates. Two- and three-dimensional front-end airflow simulations are iirst analyzed experimentally. A technique for predicting a three-dimensional airflow from a numerical analysis of a two-dimensional airflow is then examined, and a comparison is made with actual vehicle data. A sample application of this simulation method is presented and a comparison is made with experimental data. Good quantitative agreement is seen between the calculated and experimental results. This paper also discusses the present status of three-dimensional analysis which is expected to become a major trend in the future.
Technical Paper

Radiation Noise Due to Longitudinal Vibration of the Exhaust Pipe

1985-11-11
852266
The front exhaust pipe and the heat-shield plate of the catalytic converter are excited by the engine vibration. Noise radiation occurs on their surface. Concerning vehicle exterior noise, noise radiated from the exhaust system is often one of major sources as well as engine and exhaust noise. This paper describes the longitudinal vibration model-as a beam-is applied to the high frequency vibration that causes the noise radiated from the exhaust system. It describes also some methods of reducing such noise radiation by isolating the vibration from the front exhaust pipe. These methods are: adding mass to the front pipe, changing the material of the front pipe to a smaller Young's modulus one, installing flexible pipe composed by two sections, and so on.
X