Refine Your Search

Search Results

Journal Article

Reactivity Controlled Compression Ignition Drive Cycle Emissions and Fuel Economy Estimations Using Vehicle Systems Simulations with E30 and ULSD

2014-04-01
2014-01-1324
In-cylinder blending of gasoline and diesel to achieve reactivity controlled compression ignition (RCCI) has been shown to reduce NOX and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. However, the current range of the experimental RCCI engine map investigated here does not allow for RCCI operation over the entirety of some drive cycles and may require a multi-mode strategy where the engine switches from RCCI to CDC when speed and load fall outside of the RCCI range.
X