Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Limitations and Recommended Practice In the Use of Compression and Leak-Down Tests to Monitor Gradual Engine Degradation

2011-12-06
2011-01-2427
Compression and leak-down tests are frequently used to identify and diagnose failed engine power cylinders. It is also often desirable in research and testing programs to use these tests to monitor incremental changes in cylinder leakage. This paper investigates whether these tests are adequate in their present form to monitor incremental changes in cylinder leakage. Results are presented from two vehicle fleets at two test sites. Compression and leak-down tests were conducted on these fleets periodically during a mileage accumulation study. The results were used to establish the variability inherent in the compression and leak-down test processes. Comparisons between the results at the initial mileage test for the study vehicles with those at the final mileage test are shown to be largely within the uncertainty established for repeat assessments.
Technical Paper

Performance of a NOX Adsorber and Catalyzed Particle Filter System on a Light-Duty Diesel Vehicle

2001-05-07
2001-01-1933
A prototype emissions control system consisting of a close-coupled lightoff catalyst, catalyzed diesel particle filter (CDPF), and a NOX adsorber was evaluated on a Mercedes A170 CDI. This laboratory experiment aimed to determine whether the benefits of these technologies could be utilized simultaneously to allow a light-duty diesel vehicle to achieve levels called out by U.S. Tier 2 emissions legislation. This research was carried out by driving the A170 through the U.S. Federal Test Procedure (FTP), US06, and highway fuel economy test (HFET) dynamometer driving schedules. The vehicle was fueled with a 3-ppm ultra-low sulfur fuel. Regeneration of the NOX adsorber/CDPF system was accomplished by using a laboratory in-pipe synthesis gas injection system to simulate the capabilities of advanced engine controls to produce suitable exhaust conditions. The results show that these technologies can be combined to provide high pollutant reduction efficiencies in excess of 90% for NOX and PM.
X