Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Dyno-in-the-Loop: An Innovative Hardware-in-the-Loop Development and Testing Platform for Emerging Mobility Technologies

2020-04-14
2020-01-1057
Today’s transportation is quickly transforming with the nascent advent of connectivity, automation, shared-mobility, and electrification. These technologies will not only affect our safety and mobility, but also our energy consumption, and environment. As a result, it is of unprecedented importance to understand the overall system impacts due to the introduction of these emerging technologies and concepts. Existing modeling tools are not able to effectively capture the implications of these technologies, not to mention accurately and reliably evaluating their effectiveness with a reasonable scope. To address these gaps, a dynamometer-in-the-loop (DiL) development and testing approach is proposed which integrates test vehicle(s), chassis dynamometer, and high fidelity traffic simulation tools, in order to achieve a balance between the model accuracy and scalability of environmental analysis for the next generation of transportation systems.
Journal Article

Deep Learning-Based Queue-Aware Eco-Approach and Departure System for Plug-In Hybrid Electric Buses at Signalized Intersections: A Simulation Study

2020-04-14
2020-01-0584
Eco-Approach and Departure (EAD) has been considered as a promising eco-driving strategy for vehicles traveling in an urban environment, where information such as signal phase and timing (SPaT) and geometric intersection description is well utilized to guide vehicles passing through intersections in the most energy-efficient manner. Previous studies formulated the optimal trajectory planning problem as finding the shortest path on a graphical model. While this method is effective in terms of energy saving, its computation efficiency can be further enhanced by adopting machine learning techniques. In this paper, we propose an innovative deep learning-based queue-aware eco-approach and departure (DLQ-EAD) system for a plug-in hybrid electric bus (PHEB), which is able to provide an online optimal trajectory for the vehicle considering both the downstream traffic condition (i.e. traffic lights, queues) and the vehicle powertrain efficiency.
Technical Paper

Engine-Aftertreatment in Closed-Loop Modeling for Heavy Duty Truck Emissions Control

2019-04-02
2019-01-0986
An engine-aftertreatment computational model was developed to support in-loop performance simulations of tailpipe emissions and fuel consumption associated with a range of heavy-duty (HD) truck drive cycles. For purposes of this study, the engine-out exhaust dynamics were simulated with a combination of steady-state engine maps and dynamic correction factors that accounted for recent engine operating history. The engine correction factors were approximated as dynamic first-order lags associated with the thermal inertia of the major engine components and the rate at which engine-out exhaust temperature and composition vary as combustion heat is absorbed or lost to the surroundings. The aftertreatment model included catalytic monolith components for diesel exhaust oxidation, particulate filtration, and selective catalytic reduction of nitrogen oxides (NOx) with urea.
Technical Paper

Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

2017-03-28
2017-01-0183
It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work. The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements.
Technical Paper

Thermal Storage System for Electric Vehicle Cabin Heating - Component and System Analysis

2016-04-05
2016-01-0244
Cabin heating of current electric vehicle (EV) designs is typically provided using electrical energy from the traction battery, since waste heat is not available from an engine as in the case of a conventional automobile. In very cold climatic conditions, the power required for space heating of an EV can be of a similar magnitude to that required for propulsion of the vehicle. As a result, its driving range can be reduced very significantly during the winter season, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage from an advanced phase change material (PCM) has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs).
Journal Article

Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

2014-09-30
2014-01-2326
Two hybrid powertrain configurations, including parallel and series hybrids, were simulated for fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving conditions. A comprehensive set of component models describing engine fuel consumption, emissions control, battery energy, and accessory power demand interactions was developed and integrated with the simulated hybrid trucks to identify heavy-duty (HD) hybrid technology barriers. The results show that series hybrid is absolutely negative for fuel-economy improvement of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical).
Journal Article

Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

2013-04-08
2013-01-1033
We compare the simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional heavy duty (HD) truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential benefit for HD hybrid vehicles during highway driving.
Technical Paper

European Lean Gasoline Direct Injection Vehicle Benchmark

2011-04-12
2011-01-1218
Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.01 LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study.
Technical Paper

Investigating Potential Light-duty Efficiency Improvements through Simulation of Turbo-compounding and Waste-heat Recovery Systems

2010-10-25
2010-01-2209
Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment.
Technical Paper

Nondestructive X-ray Inspection of Thermal Damage, Soot and Ash Distributions in Diesel Particulate Filters

2009-04-20
2009-01-0289
We describe novel results of ongoing research at 3DX-RAY Ltd and Oak Ridge National Laboratory using new, commercially available, nondestructive x-ray techniques to make engineering measurements of diesel particulate filters (DPF). Nondestructive x-ray imaging and data-analysis techniques were developed to detect and visualize the small density changes corresponding to the addition of substances such as soot and ash to DPF monoliths. The usefulness of this technique was explored through the analysis of field-aged samples, accelerated-aged samples, and the synthetic addition of ash and soot to clean DPF samples. We demonstrate the ability to visualize and measure flaws in substrates and quantify the distribution of ash and soot within the DPF. We also show that the technology is sensitive enough for evaluations of soot and ash distribution and thermal damage without removing the DPF from its metal casing.
Journal Article

Effects of Fuel Physical Properties on Diesel Engine Combustion using Diesel and Bio-diesel Fuels

2008-04-14
2008-01-1379
A computational study using multi-dimensional CFD modeling was performed to investigate the effects of physical properties on diesel engine combustion characteristics with bio-diesel fuels. Properties of typical bio-diesel fuels that were either calculated or measured are used in the study and the simulation results are compared with those of conventional diesel fuels. The sensitivity of the computational results to individual physical properties is also investigated, and the results provide information about the desirable characteristics of the blended fuels. The properties considered in the study include liquid density, vapor pressure, surface tension, liquid viscosity, liquid thermal conductivity, liquid specific heat, latent heat, vapor specific heat, vapor diffusion coefficient, vapor viscosity and vapor thermal conductivity. The results show significant effects of the fuel physical properties on ignition delay and burning rates at various engine operating conditions.
Technical Paper

Identification of Potential Efficiency Opportunities in Internal Combustion Engines Using a Detailed Thermodynamic Analysis of Engine Simulation Results

2008-04-14
2008-01-0293
Current political and environmental concerns are driving renewed efforts to develop techniques for improving the efficiency of internal combustion engines. A detailed thermodynamic analysis of an engine and its components from a 1st and 2nd Law perspective is necessary to characterize system losses and to identify efficiency opportunities. We have developed a method for performing this analysis using simulation results from commercially available engine-modeling software packages such as WAVE® from Ricardo, Inc., and GT-Power™ from Gamma Technologies, Inc. Results from the simulation are post-processed to compute thermodynamic properties such as internal energy, enthalpy, entropy, and availability (or exergy) which are required to perform energy and availability balances for the system. This analysis is performed for all major engine components (turbocharger, intercooler, EGR cooler, etc.) and for the engine as a whole as a function of crank angle over an entire engine cycle.
Technical Paper

On the Nature of Cyclic Dispersion in Spark Assisted HCCI Combustion

2006-04-03
2006-01-0418
We report experimental observations of cyclic combustion variability during the transition between propagating flame combustion and homogeneous charge compression ignition (HCCI) in a single-cylinder, stoichiometrically fueled, spark-assisted gasoline engine. The level of internal EGR was controlled with variable valve actuation (VVA), and HCCI combustion was achieved at high levels of internal EGR using the VVA system. Spark-ignition was used for conventional combustion and was optionally available during HCCI. The transition region between purely propagating combustion and HCCI was mapped at multiple engine speeds and loads by incrementally adjusting the internal EGR level and capturing data for 2800 sequential cycles. These measurements revealed a complex sequence of high COV, cyclic combustion variations when operating between the propagating flame and HCCI limits.
X