Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Methodology for Active Force Cancellation in Automotive Application Using Mass Imbalance & Centrifugal Force Generation (CFG) Principle

2024-04-09
2024-01-2343
A variety of structures resonate when they are excited by external forces at, or near, their natural frequencies. This can lead to high deformation which may cause damage to the integrity of the structure. There have been many applications of external devices to dampen the effects of this excitation, such as tuned mass dampers or both semi-active and active dampers, which have been implemented in buildings, bridges, and other large structures. One of the active cancellation methods uses centrifugal forces generated by the rotation of an unbalanced mass. These forces help to counter the external excitation force coming into the structure. This research focuses on active force cancellation using centrifugal forces (CFG) due to mass imbalance and provides a virtual solution to simulate and predict the forces required to cancel external excitation to an automotive structure. This research tries to address the challenges to miniaturize the CFG model for a body-on-frame truck.
Technical Paper

High Dimensional Preference Learning: Topological Data Analysis Informed Sampling for Engineering Decision Making

2024-04-09
2024-01-2422
Engineering design-decisions often involve many attributes which can differ in the levels of their importance to the decision maker (DM), while also exhibiting complex statistical relationships. Learning a decision-making policy which accurately represents the DM’s actions has long been the goal of decision analysts. To circumvent elicitation and modeling issues, this process is often oversimplified in how many factors are considered and how complicated the relationships considered between them are. Without these simplifications, the classical lottery-based preference elicitation is overly expensive, and the responses degrade rapidly in quality as the number of attributes increase. In this paper, we investigate the ability of deep preference machine learning to model high-dimensional decision-making policies utilizing rankings elicited from decision makers.
Technical Paper

RL-MPC: Reinforcement Learning Aided Model Predictive Controller for Autonomous Vehicle Lateral Control

2024-04-09
2024-01-2565
This paper presents a nonlinear model predictive controller (NMPC) coupled with a pre-trained reinforcement learning (RL) model that can be applied to lateral control tasks for autonomous vehicles. The past few years have seen opulent breakthroughs in applying reinforcement learning to quadruped, biped, and robot arm motion control; while these research extend the frontiers of artificial intelligence and robotics, control policy governed by reinforcement learning along can hardly guarantee the safety and robustness imperative to the technologies in our daily life because the amount of experience needed to train a RL model oftentimes makes training in simulation the only candidate, which leads to the long-standing sim-to-real gap problem–This forbids the autonomous vehicles to harness RL’s ability to optimize a driving policy by searching in a high-dimensional state space.
Technical Paper

Active Collision Avoidance System for E-Scooters in Pedestrian Environment

2024-04-09
2024-01-2555
In the dense fabric of urban areas, electric scooters have rapidly become a preferred mode of transportation. As they cater to modern mobility demands, they present significant safety challenges, especially when interacting with pedestrians. In general, e-scooters are suggested to be ridden in bike lanes/sidewalks or share the road with cars at the maximum speed of about 15-20 mph, which is more flexible and much faster than pedestrians and bicyclists. Accurate prediction of pedestrian movement, coupled with assistant motion control of scooters, is essential in minimizing collision risks and seamlessly integrating scooters in areas dense with pedestrians. Addressing these safety concerns, our research introduces a novel e-Scooter collision avoidance system (eCAS) with a method for predicting pedestrian trajectories, employing an advanced Long short-term memory (LSTM) network integrated with a state refinement module.
Technical Paper

Algorithm to Calibrate Catalytic Converter Simulation Light-Off Curve

2024-04-09
2024-01-2630
Spark ignition engines utilize catalytic converters to reform harmful exhaust gas emissions such as carbon monoxide, unburned hydrocarbons, and oxides of nitrogen into less harmful products. Aftertreatment devices require the use of expensive catalytic metals such as platinum, palladium, and rhodium. Meanwhile, tightening automotive emissions regulations globally necessitate the development of high-performance exhaust gas catalysts. So, automotive manufactures must balance maximizing catalyst performance while minimizing production costs. There are thousands of different recipes for catalytic converters, with each having a different effect on the various catalytic chemical reactions which impact the resultant tailpipe gas composition. In the development of catalytic converters, simulation models are often used to reduce the need for physical parts and testing, thus saving significant time and money.
Technical Paper

Design and Simulation of Battery Enclosure for an Electric Vehicle Application

2024-04-09
2024-01-2738
Making a sturdy battery box or enclosure is one of the many challenging issues that the expansion of electrification entails. Many characteristics of an effective battery housing contribute to the safety of passengers and shield the battery from the harsh environment created by vibrations and shocks due to varying road profiles in the vehicle. This results in stress and deformations of different degrees. There is a need to understand and develop a correlation between structural performance and lightweight design of battery enclosure as this can increase the range of the drive and the life cycle of a battery pack. This paper investigates the following points: I) A conceptualized CAD model of battery enclosure is developed to understand the design parameters such as utilization of different material for strength and structural changes for performance against vibration and strength.
Technical Paper

Amplitude Method for Detecting Debonding in Stack Bond Adhesive

2024-03-13
2024-01-5033
Adhesively bonded joints have been applied in the automotive industry for the past few decades due to their advantages such as higher fatigue resistance, light weight, capability of joining dissimilar materials, good energy absorption, and high torsional stiffness for overall body structure. They also provide an effective seal against noise and vibration at a low cost. There exists the challenge of defining the fatigue characteristics of adhesive joints under cyclic loading conditions, and conventional methods have limitations in detecting the crack initiation of a bonded joint. This study introduces a method of detecting crack initiation by using the frequency method. It is found that stiffness change in the system is highly correlated to change in natural frequencies. By monitoring the change in natural frequencies, the crack initiation can be detected.
Technical Paper

Tooth Mesh Characterization of Spur Gear Pairs with Surface Pitting Damage

2023-04-11
2023-01-0458
A finite element/contact mechanics (FE/CM) method is used to determine the tooth contact forces, static transmission error, and tooth pair stiffnesses for spur gear pairs that have pitting damage. The pitting damage prevents portions of the tooth surface from carrying load, which results in meaningfully different contact pressure distribution on the gear teeth and deformations at the mesh. Pits of elliptical shape are investigated. Parametric analyses are used to investigate the effect of pit width (along the tooth face) and height (along the tooth profile) on the gear tooth mesh interface. Pitting damage increases static transmission error and decreases tooth pair stiffness. Tooth contact forces differ only in the portions of the mesh cycle when multiple pairs of teeth are in contact and share the transmitted load. Pitting damage does not change the loads when only a single pair of teeth are in contact.
Technical Paper

Low Friction Coating for High Temperature Bolted Joints in IC Engines

2023-04-11
2023-01-0733
The IC engine still plays an important role in global markets, although electrified vehicles are highly demanded in some markets. Emission requirements for stoichiometric operation are challenging. This requires the bolted joints for turbo, EGR (Exhaust Gas Recirculation) and exhaust manifold to work under much higher temperature than before. How to avoid fastener breakage due to bolt bending caused by cyclic changes of the thermal conditions in engines is a big challenge. The temperatures of the components in the exhaust, EGR (Exhaust Gas Recirculation) and turbo systems change from ambient temperature to about 800 ~ 1000 °C when engines run at peak power with wide-open throttle. The temperature change induces catastrophic cyclic bending and axial strain to the fasteners. This research describes a method to reduce the cyclic bending displacement in the fasteners using a low friction washer.
Technical Paper

Topological Data Analysis for Navigation in Unstructured Environments

2023-04-11
2023-01-0088
Autonomous vehicle navigation, both global and local, makes use of large amounts of multifactorial data from onboard sensors, prior information, and simulations to safely navigate a chosen terrain. Additionally, as each mission has a unique set of requirements, operational environment and vehicle capabilities, any fixed formulation for the cost associated with these attributes is sub-optimal across different missions. Much work has been done in the literature on finding the optimal cost definition and subsequent mission pathing given sufficient measurements of the preference over the mission factors. However, obtaining these measurements can be an arduous and computationally expensive task. Furthermore, the algorithms that utilize this large amount of multifactorial data themselves are time consuming and expensive.
Journal Article

Suction Cup Quality Predication by Digital Image Correlation

2023-04-11
2023-01-0067
Vacuum suction cups are used as transforming handles in stamping lines, which are essential in developing automation and mechanization. However, the vacuum suction cup will crack due to fatigue or long-term operation or installation angle, which directly affects production productivity and safety. The better design will help increase the cups' service life. If the location of stress concentration can be predicted, this can prevent the occurrence of cracks in advance and effectively increase the service life. However, the traditional strain measurement technology cannot meet the requirements of tracking large-field stains and precise point tracking simultaneously in the same area, especially for stacking or narrow parts of the suction cups. The application must allow multiple measurements of hidden component strain information in different fields of view, which would add cost.
Journal Article

Development of Digital Shearography for Dual Sensitivity Simultaneous Measurement Using Carrier Frequency Spatial Phase Shift Technology

2023-04-11
2023-01-0068
Digital shearography has many advantages, such as full-field, non-contact, high sensitivity, and good robustness. It was widely used to measure the deformation and strain of materials, also to the application of nondestructive testing (NDT). However, most digital sherography applications can only work in one field of view per measurement, and some small defects may not be detected as a result. Multiple measurements of different fields of view are needed to solve this issue, which will increase the measurement time and cost. The difficulty in performing multiple measurements may also increase for cases where the loading is not repeatable. Therefore, a system capable of measuring dual fields of view at the same time is necessary. The carrier frequency spatial phase shift method may be a good candidate to reach this goal because it can simultaneously record phase information of multiple images, e.g. two speckle interferograms with different fields of view.
Technical Paper

EV Battery Power Management for Supplying Smart Loads in Power Distribution Systems

2022-03-29
2022-01-0171
The number of EVs are increasing in power distribution systems every day. This research analyses different penetration levels of electric vehicles in power distribution systems to provide stable energy for smart devices and observes its impacts on operational costs and environmental emissions. The supply of EV power is determined based on smart device consumption by optimal energy management of EV batteries so that both the utilities and the car owner get benefits. Utilities can save energy by reducing system loss, while EV owners can earn money by selling it to utilities at their convenient time for smart device operations. The PG&E 69-bus distribution system is used for the simulation and case studies. Case studies in this research show how the power management of EV's batteries charging and discharging characteristics benefits both utilities and EV owners. The uncertainty of the driving pattern of EVs is also considered in the research to get more accurate results.
Journal Article

Quantum Explanations for Interference Effects in Engineering Decision Making

2022-03-29
2022-01-0215
Engineering practice routinely involves decision making under uncertainty. Much of this decision making entails reconciling multiple pieces of information to form a suitable model of uncertainty. As more information is collected, one expectedly makes better and better decisions. However, conditional probability assessments made by human decision makers, as new information arrives does not always follow expected trends and instead exhibits inconsistencies. Understanding them is necessary for a better modeling of the cognitive processes taking place in their mind, whether it be the designer or the end-user. Doing so can result in better products and product features. Quantum probability has been used in the literature to explain many commonly observed deviations from the classical probability such as: question order effect, response replicability effect, Machina and Ellsberg paradoxes and the effect of positive and negative interference between events.
Technical Paper

Analyzing the Impact of Electric Vehicles on Power Losses and Voltage Profile in Power Distribution Systems

2022-03-29
2022-01-0748
As the number of electric vehicles (EVs) within society rapidly increase, the concept of maximizing its efficiency within the electric smart grid becomes crucial. This research presents the impacts of integrating EV charging infrastructures within a smart grid through a vehicle to grid (V2G) program. It also observes the circulation of electric charge within the system so that the electric grid does not become exhausted during peak hours. This paper will cover several different case studies and will analyze the best and worst scenarios for the power losses and voltage profiles in the power distribution system. Specifically, we seek to find the optimal location as well as the ideal number of EVs in the distribution system while minimizing its power losses and optimizing its voltage profile. Verification of the results are primarily conducted using GUIs created on MATLAB.
Technical Paper

Event-Triggered Model Predictive Control for Autonomous Vehicle with Rear Steering

2022-03-29
2022-01-0877
This paper proposes a new nonlinear model predictive control (NMPC) for autonomous vehicle path tracking problem. The vehicle is equipped with active rear steering, allowing independent control of front and rear steering. Traditional NMPC, which runs at fixed sampling rate, has been shown to provide satisfactory control performance in this problem. However, the high throughput of NMPC limits its implementation in production vehicle. To address this issue, we propose a novel event-triggered NMPC formulation, where the NMPC is triggered to run only when the actual states deviate from prediction beyond certain threshold. In other words, the event-triggered NMPC will formulate and solve a constrained optimal control problem only if it is enabled by a trigger event. When NMPC is not triggered, the optimal control sequence computed from last NMPC instance is shifted to determine the control action.
Technical Paper

EV Battery Charger Impacts on Power Distribution Transformers Due to Harmonics

2022-03-29
2022-01-0750
Increasing the demand for EV charging has increased the burden and accretion of the power quality issues. Harmonic voltages and currents have a significant negative influence on power system components, specifically power transformers. The voltage and current harmonics created by EV chargers and their impacts on power transformers have been discussed in this paper, and an approach is proposed to reduce such harmonics in the system. For this purpose, firstly, the total harmonic distortion (THD) of a typical EV charger is evaluated. Then an analysis is performed utilizing Fast Fourier Transform (FTT) to extract individual harmonics. To this end, this paper addresses the power quality issues on the power transformers by implementing a passive filter. The harmonic voltages and currents were measured on different levels of charging loads. The simulation results show that more than 30% of total harmonic distortions were reduced to 1.16% using a passive filter.
Journal Article

Damage-Induced Dynamic Tooth Contact Forces in Spur Gears with Root Cracks

2022-03-29
2022-01-0642
A finite element/contact mechanics formulation is used to analyze the dynamic tooth forces that arise from damage-induced vibrations in spur gear pairs. Tooth root crack damage of varying sizes are analyzed for a wide range of speeds that include resonant gear speeds. The added localized compliance from tooth root crack damage leads to a re-distribution of the forces on the individual gear teeth in mesh. At speeds away from resonance, smaller dynamic forces occur on the damaged tooth and larger dynamic forces occur on the tooth that engages immediately after it. These dynamic tooth contact forces cause additional transient dynamic response in the gear pair. For certain speeds and sufficiently large tooth root cracks, the damage-induced dynamic response causes large enough vibration that tooth contact loss nonlinearity occurs. For some speeds near resonance, the damage-induced vibrations cause teeth that normally lose contact to remain in contact due to vibration.
Technical Paper

Fault Diagnosis and Prediction in Automotive Systems with Real-Time Data Using Machine Learning

2022-03-29
2022-01-0217
In the automotive industry, a Malfunction Indicator Light (MIL) is commonly employed to signify a failure or error in a vehicle system. To identify the root cause that has triggered a particular fault, a technician or engineer will typically run diagnostic tests and analyses. This type of analysis can take a significant amount of time and resources at the cost of customer satisfaction and perceived quality. Predicting an impending error allows for preventative measures or actions which might mitigate the effects of the error. Modern vehicles generate data in the form of sensor readings accessible through the vehicle’s Controller Area Network (CAN). Such data is generally too extensive to aid in analysis and decision making unless machine learning-based methods are used. This paper proposes a method utilizing a recurrent neural network (RNN) to predict an impending fault before it occurs through the use of CAN data.
Technical Paper

EV Penetration for Minimizing Power System Emissions

2021-04-06
2021-01-0788
This work illustrates the potential of Electric Vehicles (EVs) as a grid support tool that will lower carbon emissions from both the energy production sector and the transportation sector. EVs can provide peak shaving power to the grid while discharging and valley filling power while charging to flatten the total load curve of a distribution system. The idea is called Vehicle to Grid (V2G). Flattening the load curve will allow utility providers to delay upgrading, or the purchase of new power generation stations, as well as best utilize renewable energy resources that may be uncontrollable in nature. Electrical energy production and transportation combined accounted for 2,534 million metric tons of carbon dioxide emissions in the US in 2019. Utilizing EVs for transportation as well as grid support will decrease this figure in each sector. This technology may pave the way to cleaner, more reliable, cost effective energy systems.
X