Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Microstructural Contact Mechanics Finite Element Modeling Used to Study the Effect of Coating Induced Residual Stresses on Bearing Failure Mechanisms

2014-04-01
2014-01-1018
Coatings have the potential to improve bearing tribological performance. However, every coating application process and material combination may create different residual stresses and coating microstructures, and their effect on bearing fatigue and wear performance is unclear. The aim of this work is to investigate coating induced residual stress effects on bearing failure indicators using a microstructural contact mechanics (MSCM) finite element (FE) model. The MSCM FE model consists of a two-dimensional FE model of a coated bearing surface under sliding contact where individual grains are represented by FE domains. Interactions between FE domains are represented using contact element pairs. Unique to this layered rolling contact FE model is the use of polycrystalline material models to represent realistic bearing and coating microstructural behavior. The MSCM FE model was compared to a second non-microstructural contact mechanics (non-MSCM) model.
Journal Article

Scuffing Behavior of 4140 Alloy Steel and Ductile Cast Iron

2012-04-16
2012-01-0189
Scuffing is a failure mechanism which can occur in various engineering components, such as engine cylinder kits, gears and cam/followers. In this research, the scuffing behavior of 4140 steel and ductile iron was investigated and compared through ball-on-disk scuffing tests. A step load of 22.2 N every two minutes was applied with a light mineral oil as lubricant to determine the scuffing load. Both materials were heat treated to various hardness and tests were conducted to compare the scuffing behavior of the materials when the tempered hardness of each material was the same. Ductile iron was found to have a consistently high scuffing resistance before tempering and at tempering temperatures lower than 427°C (HRC ≻45). Above 427°C the scuffing resistance decreases. 4140 steel was found to have low scuffing resistance at low tempering temperatures, but as the tempering temperature increases, the scuffing resistance increased.
X