Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Topological Data Analysis for Navigation in Unstructured Environments

2023-04-11
2023-01-0088
Autonomous vehicle navigation, both global and local, makes use of large amounts of multifactorial data from onboard sensors, prior information, and simulations to safely navigate a chosen terrain. Additionally, as each mission has a unique set of requirements, operational environment and vehicle capabilities, any fixed formulation for the cost associated with these attributes is sub-optimal across different missions. Much work has been done in the literature on finding the optimal cost definition and subsequent mission pathing given sufficient measurements of the preference over the mission factors. However, obtaining these measurements can be an arduous and computationally expensive task. Furthermore, the algorithms that utilize this large amount of multifactorial data themselves are time consuming and expensive.
Technical Paper

Fault Diagnosis and Prediction in Automotive Systems with Real-Time Data Using Machine Learning

2022-03-29
2022-01-0217
In the automotive industry, a Malfunction Indicator Light (MIL) is commonly employed to signify a failure or error in a vehicle system. To identify the root cause that has triggered a particular fault, a technician or engineer will typically run diagnostic tests and analyses. This type of analysis can take a significant amount of time and resources at the cost of customer satisfaction and perceived quality. Predicting an impending error allows for preventative measures or actions which might mitigate the effects of the error. Modern vehicles generate data in the form of sensor readings accessible through the vehicle’s Controller Area Network (CAN). Such data is generally too extensive to aid in analysis and decision making unless machine learning-based methods are used. This paper proposes a method utilizing a recurrent neural network (RNN) to predict an impending fault before it occurs through the use of CAN data.
Technical Paper

A Two-Layer Soot Model for Hydrocarbon Fuel Combustion

2020-04-14
2020-01-0243
Experimental studies of soot particles showed that the intensity ratio of amorphous and graphite layers measured by Raman spectroscopy correlates to soot oxidation reactivities, which is very important for regeneration of the diesel particulate filters and gasoline particulate filters. This physical mechanism is absent in all soot models. In the present paper, a novel two-layer soot model was proposed that considers the amorphous and graphite layers in the soot particles. The soot model considers soot inception, soot surface growth, soot oxidation by O2 and OH, and soot coagulation. It is assumed that amorphous-type soot forms from fullerene. No soot coagulation is considered in the model between the amorphous- and graphitic-types of soot. Benzene is taken as the soot precursor, which is formed from acetylene. The model was implemented into a commercial CFD software CONVERGE using user defined functions. A diesel engine case was simulated.
Journal Article

An Improved Reanalysis Method Using Parametric Reduced Order Modeling for Linear Dynamic Systems

2016-04-05
2016-01-1318
Finite element analysis is a standard tool for deterministic or probabilistic design optimization of dynamic systems. The optimization process requires repeated eigenvalue analyses which can be computationally expensive. Several reanalysis techniques have been proposed to reduce the computational cost including Parametric Reduced Order Modeling (PROM), Combined Approximations (CA), and the Modified Combined Approximations (MCA) method. Although the cost of reanalysis is substantially reduced, it can still be high for models with a large number of degrees of freedom and a large number of design variables. Reanalysis methods use a basis composed of eigenvectors from both the baseline and the modified designs which are in general linearly dependent. To eliminate the linear dependency and improve accuracy, Gram Schmidt orthonormalization is employed which is costly itself.
Technical Paper

Design Approach for Online Measuring the Distance of the Gap between the Contactors of Electric Relay Switch

2014-04-01
2014-01-0831
The assembling accuracy of two contactors during the relay switch production is an important factor affecting the quality of relay. An embedded machine vision quality Inspection system has been developed for electric relay production line inspection. The proposed system can provide online feedback on the quality of the relays by measuring the distance of the gap between the contacts of them. Two CMOS imaging sensors are operated for image acquisition and the parallel working mode is realized under dual-channel mode. A red light illumination system has been adopted to eliminate the imaging noise from the reflection of the surfaces of copper sheet. Before the test, the features areas in the image of same type relay is selected as template and saved in the computer. During the inspection procedure, a rotation invariance detection scheme based on circular projection matching algorithm has been used for fast recognizing and locating detected object with the help of these feature areas.
Technical Paper

An Efficient Re-Analysis Methodology for Vibration of Large-Scale Structures

2007-05-15
2007-01-2326
Finite element analysis is a well-established methodology in structural dynamics. However, optimization and/or probabilistic studies can be prohibitively expensive because they require repeated FE analyses of large models. Various reanalysis methods have been proposed in order to calculate efficiently the dynamic response of a structure after a baseline design has been modified, without recalculating the new response. The parametric reduced-order modeling (PROM) and the combined approximation (CA) methods are two re-analysis methods, which can handle large model parameter changes in a relatively efficient manner. Although both methods are promising by themselves, they can not handle large FE models with large numbers of DOF (e.g. 100,000) with a large number of design parameters (e.g. 50), which are common in practice. In this paper, the advantages and disadvantages of the PROM and CA methods are first discussed in detail.
X