Refine Your Search

Topic

Author

Search Results

Technical Paper

Icing Physics Studies Using the 3D SIDRM Test Article: Aerodynamic and Supercooled Liquid Icing Analysis

2023-06-15
2023-01-1399
In-flight icing is an important safety issue and is a factor that affects aircraft design and performance. Newer regulations are driving a need for improvements in airframe and engine icing simulation capability. Experimental data is required for development of icing physics models and simulation validation. To that end, this paper presents the analysis of the supercooled liquid icing data subset from tests conducted in 2022 at the NASA Icing Research Tunnel that studied both supercooled water and ice-crystal icing. The test article that was utilized replicated 3D geometrical features of an inter-compressor duct and strut region of a turbofan engine. The surfaces of the Simulated Inter-compressor Duct Research Model (SIDRM) can be heated to simulate the warm surfaces of the turbofan inter-compressor duct.
Technical Paper

Total Temperature Measurements in Icing Cloud Flows Using a Rearward Facing Probe

2019-06-10
2019-01-1923
This paper reports on temperature and humidity measurements from a series of ice-crystal icing tunnel experiments conducted in June 2018 at the Propulsion Systems Laboratory at the NASA Glenn Research Center. The tests were fundamental in nature and were aimed at investigating the icing processes on a two-dimensional NACA0012 airfoil subjected to artificially generated icing clouds. Prior to the tests on the airfoil, a suite of instruments, including total temperature and humidity probes, were used to characterize the thermodynamic flow and icing cloud conditions of the facility. Two different total temperature probes were used in these tests which included a custom designed rearward facing probe and a commercial self-heating total temperature probe. The rearward facing probe, the main total temperature probe, is being designed to reduce and mitigate the contaminating effects of icing and ingestion of ice crystals and water droplets at the probe’s inlet.
Technical Paper

Measured Interfacial Residual Strains Produced by In-Flight Ice

2019-06-10
2019-01-1998
The formation of ice on aircraft is a highly dynamic process during which ice will expand and contract upon freezing and undergoing changes in temperature. Finite element analysis (FEA) simulations were performed investigating the stress/strain response of an idealized ice sample bonded to an acrylic substrate subjected to a uniform temperature change. The FEA predictions were used to guide the placement of strain gages on custom-built acrylic and aluminum specimens. Tee rosettes were placed in two configurations adjacent to thermocouple sensors. The specimens were then placed in icing conditions such that ice was grown on top of the specimen. It was hypothesized that the ice would expand on freezing and contract as the temperature of the interface returned to the equilibrium conditions.
Technical Paper

Analysis of Experimental Ice Accretion Data and Assessment of a Thermodynamic Model during Ice Crystal Icing

2019-06-10
2019-01-2016
This paper analyzes ice crystal icing accretion data and evaluates a thermodynamic ice crystal icing model, which has been previously presented, to describe the possible mechanisms of icing within the core of a turbofan jet engine. The model functions between two distinct ice accretions based on a surface energy balance: freeze-dominated icing and melt-dominated icing. Freeze-dominated icing occurs when liquid water (from melted ice crystals) freezes and accretes on a surface along with the existing ice of the impinging water and ice mass. This freeze-dominated icing is characterized as having strong adhesion to the surface. The amount of ice accretion is partially dictated by a freeze fraction, which is the fraction of impinging liquid water that freezes. Melt-dominated icing occurs as unmelted ice on a surface accumulates. This melt-dominated icing is characterized by weakly bonded surface adhesion.
Technical Paper

A Dynamic Two-Phase Component Model Library for High Heat Flux Applications

2019-03-19
2019-01-1386
Pumped two-phase systems using mini or microchannel heat sink evaporators are prime candidates for high heat flux applications due to relatively low pumping power requirements and efficient heat removal in compact designs. A number of challenges exist in the implementation of these systems including: ensuring subcooled liquid to the pump to avoid cavitation, avoiding dry out conditions in heat exchangers that can lead to failures of the components under cooling, and avoiding flow instabilities that can damage components in an integrated system. To reduce risk and cost, modeling and simulation can be employed in the design and development of these complex systems, but such modeling must include the relevant behavior necessary to capture the above dynamic effects.
Technical Paper

Recent Advances in the LEWICE Icing Model

2015-06-15
2015-01-2094
This paper will describe two recent modifications to the LEWICE software. The version described is under development and not ready for release. First, a capability for modeling ice crystals and mixed phase icing has been modified based on recent experimental data. Modifications have been made to the ice particle bouncing and erosion model. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to ice crystal ice accretions performed in the NRC Research Altitude Test Facility (RATFac). Second, modifications were made to the runback model based on data and observations from thermal scaling tests performed in the NRC Altitude Icing Tunnel. The runback model was modified to match film models used in the open literature. An empirical water shedding was also implemented. Comparisons were made to thermal deicing data taken at the NRC Altitude Icing Tunnel.
Technical Paper

A Reevaluation of Appendix C Ice Roughness Using Laser Scanning

2015-06-15
2015-01-2098
Many studies have been performed to quantify the formation and evolution of roughness on ice shapes created in Appendix C icing conditions, which exhibits supercooled liquid droplets ranging from 1-50 µm. For example Anderson and Shin (1997), Anderson et al. (1998), and Shin (1994) represent early studies of ice roughness during short-duration icing events measured in the Icing Research Tunnel at the NASA Glenn Research Center. In the historical literature, image analysis techniques were employed to characterize the roughness. Using multiple images of the roughness elements, these studies of roughness focused on extracting parametric representations of ice roughness elements. While the image analysis approach enabled many insights into icing physics, recent improvements in laser scanning approaches have revolutionized the process of ice accretion shape characterization.
Technical Paper

Fundamental Ice Crystal Accretion Physics Studies

2011-06-13
2011-38-0018
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations.
Technical Paper

Further Evaluation of Scaling Methods for Rotorcraft Icing

2011-06-13
2011-38-0083
The paper will present experimental results from two recent icing tests in the NASA Glenn Icing Research Tunnel (IRT). The first test, conducted in February 2009, was to evaluate the current recommended scaling methods for fixed wing on representative rotor airfoils at fixed angle of attack. For this test, scaling was based on the modified Ruff method with scale velocity determined by constant Weber number and water film Weber number. Models were un-swept NACA 0012 wing sections. The reference model had a chord of 91.4 cm and scale model had a chord of 35.6 cm. Reference tests were conducted with velocity of 100 kt (52 m/s), droplet medium volume diameter (MVD) 195 μm, and stagnation-point freezing fractions of 0.3 and 0.5 at angle of attack of 5° and 7°. It was shown that good ice shape scaling was achieved with constant Weber number for NACA 0012 airfoils with angle of attack up to 7°.
Technical Paper

Modeling Mission Operations Trade Spaces and Lunar C3I Capabilities

2009-07-12
2009-01-2426
This paper introduces an integration-level analysis tool to provide feedback for high-level trade spaces. The Purdue University Lunar C3I Model integrates approximations of several domain-specific models to simulate for many years the effect of network and asset parameters. This paper discusses the communication, anomaly response, and autonomy simulation models in depth. Results of these models provide specific examples of integration-level figures of merit that can be useful for comparing different campaign implementations. These figures of merit are contrasted with related domain-specific figures of merit in order to demonstrate the need for higher-level system integration decisions. A final example of integration-level results and interpretation discusses the autonomy level of the Altair lunar lander.
Journal Article

Designing for Large-Displacement Stability in Aircraft Power Systems

2008-11-11
2008-01-2867
Due to the instabilities that may occur in power systems with regulated loads such as those used in military aircraft, ships, and terrestrial vehicles, many analysis techniques and design methodologies have been developed to ensure stable operation for expected operating conditions. However, many of these techniques are difficult to apply to complex systems and do not guarantee large-displacement stability following major disturbances such as faults, regenerative operation, large pulsed loads, and/or the loss of generating capacity. In this paper, a design paradigm is set forth guaranteeing large-displacement stability of a power system containing a significant penetration of regulated (constant-power) loads for any value of load power up to and including the steady-state rating of the source. Initial investigations are performed using an idealized model of a dc-source to determine the minimum requirements that ensure large-displacement stability.
Technical Paper

Characterizing Crop-Waste Loads for Solid-Waste Processing

2007-07-09
2007-01-3187
In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modeling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage.
Technical Paper

Real-time Thermal Observer for Electric Machines

2006-11-07
2006-01-3102
A temperature estimation algorithm (thermal observer) that provides accurate estimates of the thermal states of an electric machine in real time is presented. The thermal observer is designed to be a Kalman filter that combines thermal state predictions from a lumped-parameter thermal model of the electric machine with temperature measurements from a single external temperature sensor. An analysis based on the error covariance matrix of the Kalman filter is presented to guide the selection of the best sensor location. The thermal observer performance is demonstrated using a 3.8 kW permanent-magnet machine. Comparison of the thermal observer estimates and the actual temperatures demonstrate that this approach can provide accurate knowledge of the machine's thermal states despite modeling uncertainty and unknown initial machine thermal states.
Technical Paper

Modeling and Simulation of an Electric Warship Integrated Engineering Plant

2006-11-07
2006-01-3050
A layered approach to the simulation of dynamically interdependent systems is presented. In particular, the approach is applied to the integrated engineering plant of a notional all-electric warship. The models and parameters of the notional ship are presented herein. This approach is used to study disruptions to the integrated engineering plant caused by anti-ship missiles. Example simulation results establish the effectiveness of this approach in examining the propagation of faults and cascading failures throughout a dynamically interdependent system of systems.
Technical Paper

Automated Evolutionary Design of a Hybrid-Electric Vehicle Power System Using Distributed Heterogeneous Optimization

2006-11-07
2006-01-3045
The optimal design of hybrid-electric vehicle power systems poses a challenge to the system analyst, who is presented with a host of parameters to fine-tune, along with stringent performance criteria and multiple design objectives to meet. Herein, a methodology is presented to transform such a design task into a constrained multi-objective optimization problem, which is solved using a distributed evolutionary algorithm. A power system model representative of a series hybrid-electric vehicle is considered as a paradigm to support the illustration of the proposed methodology, with particular emphasis on the power system's time-domain performance.
Technical Paper

NASA Specialized Center of Research and Training in Advance Life Support (ALS/NSCORT) Education and Outreach Program

2005-07-11
2005-01-3107
The ALS/NSCORT Education and Outreach provides an avenue to engage and educate higher education students and K-12 educators/students in the center's investigations of the synergistic concepts and principles required for regenerative life-support in extended-duration space exploration. The following K-12 Education programs will be addressed: 1) Key Learning Community Project provides exposure, mentoring and research opportunities for 9-12th grade students at Key Learning Community This program was expanded in 2004 to include an “Explore Mars” 3-day camp experience for 150 Key students. The overall goal of the collaborative project is to motivate students to pursue careers in science, technology, and engineering; 2) Mission to Mars Program introduces 5th-8th grade students to the complex issues involved with living on Mars, stressing the interdisciplinary fundamentals of science, technology and engineering that underlie Advanced Life Support research.
Technical Paper

Simulation of Air Quality in ALS System with Biofiltration

2005-07-11
2005-01-3111
Most of the gaseous contaminants generated inside ALS (Advanced Life Support) cabins can be degraded to some degree by microbial degradation in a biofilter. The entry of biofiltration techniques into ALS will most likely involve integration with existing physico-chemical methods. However, in this study, cabin air quality treated by only biofiltration was predicted using the one-box and biofiltration models. Based on BVAD (Baseline Values and Assumptions Document) and SMAC (Spacecraft Maximum Allowable Concentrations), ammonia and carbon monoxide will be the critical compounds for biofilter design and control. Experimentation is needed to identify the pertinent microbial parameters and removal efficiency of carbon monoxide and to validate the results of this preliminary investigation.
Technical Paper

Loading Balance and Influent pH in a Solids Thermophilic Aerobic Reactor

2005-07-11
2005-01-2982
The application of biological treatment to solid waste is very promising to facilitate recycling of water, carbon, and nutrients and to reduce the resupply needs of long-term crewed space missions. Degradation of biodegradable solid wastes generated during such a mission is under investigation as part of the NASA Center of Research and Training (NSCORT) at Purdue University. Processing in the solids thermophilic aerobic reactor (STAR) involves the use of high temperature micro-aerobic slurry conditions to degrade solid wastes, enabling the recycling of water, carbon, and nutrients for further downstream uses. Related research presently underway includes technical development and optimization of STAR operations as well as a complementary evaluation of post-STAR processing for gas-stream purification, water recovery by condensate purification, and residuals utilization for both mushroom growth media and nutritional support for fish growth.
Technical Paper

Process Performance of Ultraviolet Water Disinfection Systems for Long-Term Space Missions

2004-07-19
2004-01-2538
The effectiveness of ultraviolet (UV) disinfection is governed by the UV dose to which microorganisms are exposed. In treatment operations, all UV disinfection systems deliver a distribution of UV doses. The ability to accurately estimate the dose distribution delivered by an operating UV system is a critical aspect of its design. Moreover, the availability of tools to accurately predict the dose distribution for an existing UV system makes it possible to develop reliable, quantitative predictions of process performance in these systems. The dose distribution can be estimated by employing computational fluid dynamics (CFD) and UV radiation intensity field modeling. UV dose-distribution data is then coupled with UV dose-response behavior for target microorganisms to yield an estimate of process performance.
Technical Paper

Aggregate System Level Material Analysis for Advanced Life Support Systems

2003-07-07
2003-01-2362
In this paper, an aggregate system level modeling and analysis framework is proposed to facilitate the integration and design of advanced life support systems (ALSS). As in process design, the goal is to choose values for the degrees of freedom that achieve the best overall ALSS behavior without violating any system constraints. At the most fundamental level, this effort will identify the constraints and degrees of freedom associated with each subsystem and provide estimates of the system behavior and interactions involved in ALSS. This work is intended to be a starting point for developing insights into ALSS from a systems engineering point of view. At this level, simple aggregate static input/output mapping subsystem models from existing data and the NASA ALS BVAD document are used to debug the model and demonstrate feasibility.
X