Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

Modelling and Analysis of a Cooperative Adaptive Cruise Control (CACC) Algorithm for Fuel Economy

2024-04-09
2024-01-2564
Connectivity in ground vehicles allows vehicles to share crucial vehicle data, such as vehicle acceleration and speed, with each other. Using sensors such as radars and lidars, on the other hand, the intravehicular distance between a leader vehicle and a host vehicle can be detected. Cooperative Adaptive Cruise Control (CACC) builds upon ground vehicle connectivity and sensor information to form convoys with automated car following. CACC can also be used to improve fuel economy and mobility performance of vehicles in the said convoy. In this paper, a CACC system is presented, where the acceleration of the lead vehicle is used in the calculation of desired vehicle speed. In addition to the smooth car following abilities, the proposed CACC also has the capability to calculate a speed profile for the ego vehicle that is fuel efficient, making it an Ecological CACC (Eco-CACC) model.
Technical Paper

Implementation of Adaptive Equivalent Consumption Minimization Strategy

2024-04-09
2024-01-2772
Electrification of vehicles is an important step towards making mobility more sustainable and carbon-free. Hybrid electric vehicles use an electric machine with an on-board energy storage system, in some form to provide additional torque and reduce the power requirement from the internal combustion engine. It is important to control and optimize this power source split between the engine and electric machine to make the best use of the system. This paper showcases an implementation of the Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) with minimization in real-time in the dSPACE MicroAutobox II as the Hybrid Supervisory Controller (HSC). While the concept of A-ECMS has been well established for many years, there are no published papers that present results obtained in a production vehicle suitably modified from conventional to hybrid electric propulsion including real world testing as well as testing on regulatory cycles.
Technical Paper

An Approach to Model a Traffic Environment by Addressing Sparsity in Vehicle Count Data

2023-04-11
2023-01-0854
For realistic traffic modeling, real-world traffic calibration data is needed. These data include a representative road network, road users count by type, traffic lights information, infrastructure, etc. In most cases, this data is not readily available due to cost, time, and confidentiality constraints. Some open-source data are accessible and provide this information for specific geographical locations, however, it is often insufficient for realistic calibration. Moreover, the publicly available data may have errors, for example, the Open Street Maps (OSM) does not always correlate with physical roads. The scarcity, incompleteness, and inaccuracies of the data pose challenges to the realistic calibration of traffic models. Hence, in this study, we propose an approach based on spatial interpolation for addressing sparsity in vehicle count data that can augment existing data to make traffic model calibrations more accurate.
Technical Paper

Power Loss Studies for Rolling Element Bearings Subject to Combined Radial and Axial Loading

2023-04-11
2023-01-0461
The power loss of bearings is a significant factor in the overall efficiency in a drive unit system. Such bearings are subject to combined radial and axial loading needed to support the gear mesh forces. An experimental methodology has been developed to perform sets of power loss measurements on TRB, 4PCBB and DGBB. These measurements were performed under a variety of speed, load, temperature, and lubrication conditions. The loss behaviors of these types of the bearings are discussed, along with the tradeoff of different bearing arrangements for the fuel economy cycles. Several power loss models are employed to assess the accuracy of the estimations as compared to the experimental measurements. At low speed some models showed good correlations for TRB and DGBB, while at higher speed, they start deviating from the testing results. A higher fidelity model for estimating the losses at high speed, especially speed around 20krpm and beyond, needs to be developed.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic. We show, however, that MitM attacks can be realized without direct tampering of any CAN hardware. Our demonstration leverages how diagnostic applications based on RP1210 are vulnerable to Machine-In-The-Middle attacks. Test results show SAE J1939 communications, including single frame and multi-framed broadcast and on-request messages, are susceptible to data manipulation attacks where a shim DLL is used as a Machine-In-The-Middle. The demonstration shows these attacks can manipulate data that may mislead vehicle operators into taking the wrong actions.
Journal Article

Performance Evaluation of Lithium-ion Batteries under Low-Pressure Conditions for Aviation Applications

2023-04-11
2023-01-0504
Electrification is getting more important in the aviation industry with the increasing need for reducing emissions of carbon dioxide and fuel consumption. It is crucial to assess the behavior of Li-Ion batteries at high-altitude conditions to design safe and reliable battery packs. This paper aims at benchmarking the performance of different formats of battery cells (pouch cells and cylindrical cells) in low-pressure environments. A test setup was designed and fabricated to replicate the standard procedure defined by the RTCA DO-311 standard, such as the altitude test and rapid decompression test. During the test voltage, current, temperature, and pressure were monitored, and the evaluation criteria is based on the capacity retention, along with the structural integrity of the cell. From preliminary tests, it was observed that cylindrical cells do not show a significant change in performance at low-pressure conditions thanks to their steel casing.
Technical Paper

A Comparative Study between Physics, Electrical and Data Driven Lithium-Ion Battery Voltage Modeling Approaches

2022-03-29
2022-01-0700
This paper benchmarks three different lithium-ion (Li-ion) battery voltage modelling approaches, a physics-based approach using an Extended Single Particle Model (ESPM), an equivalent circuit model, and a recurrent neural network. The ESPM is the selected physics-based approach because it offers similar complexity and computational load to the other two benchmarked models. In the ESPM, the anode and cathode are simplified to single particles, and the partial differential equations are simplified to ordinary differential equations via model order reduction. Hence, the required state variables are reduced, and the simulation speed is improved. The second approach is a third-order equivalent circuit model (ECM), and the third approach uses a model based on a Long Short-Term Memory Recurrent Neural Network (LSTM-RNN)). A Li-ion pouch cell with 47 Ah nominal capacity is used to parameterize all the models.
Technical Paper

Green Light Optimized Speed Advisory (GLOSA) with Traffic Preview

2022-03-29
2022-01-0152
By utilizing the vehicle to infrastructure communication, the conventional Green Light Optimized Speed Advisory (GLOSA) applications give speed advisory range for drivers to travel to pass at the green light. However, these systems do not consider the traffic between the ego vehicle and the traffic light location, resulting in inaccurate speed advisories. Therefore, the driver needs to intuitively adjust the vehicle's speed to pass at the green light and avoid traffic in these scenarios. Furthermore, inaccurate speed advisories may result in unnecessary acceleration and deceleration, resulting in poor fuel efficiency and comfort. To address these shortcomings of conventional GLOSA, in this study, we proposed the utilization of collaborative perception messages shared by smart infrastructures to create an enhanced speed advisory for the connected vehicle drivers and automated vehicles.
Technical Paper

Optimal Energy Management Strategy for Energy Efficiency Improvement and Pollutant Emissions Mitigation in a Range-Extender Electric Vehicle

2021-09-05
2021-24-0103
The definition of the energy management strategy for a hybrid electric vehicle is a key element to ensure maximum energy efficiency. The ability to optimally manage the on-board energy sources, i.e., fuel and electricity, greatly affects the final energy consumption of hybrid powertrains. In the case of plug-in series-hybrid architectures, such as Range-Extender Electric Vehicles (REEVs), fuel efficiency optimization alone can result in a stressful operation of the range-extender engine with an excessively high number of start/stops. Nonetheless, reducing the number of start/stops can lead to long periods in which the engine is off, resulting in the after-treatment system temperature to drop and higher emissions to be produced at the next engine start.
Technical Paper

A Methodology for Threat Assessment in Cut-in Vehicle Scenarios

2021-04-06
2021-01-0873
Advanced Driver Assistance System (ADAS) has become a common standard feature assisting greater safety and fuel efficiency in the latest automobiles. Yet some ADAS systems fail to improve driving comfort for vehicle occupants who expect human-like driving. One of the more difficult situations in ADAS-assisted driving involves instances with cut-in vehicles. In vehicle control, determining the moment at which the system recognizes a cut-in vehicle as an active target is a challenging task. A well-designed comprehensive threat assessment developed for cut-in vehicle driving scenarios should eliminate abrupt and excessive deceleration of the vehicle and produce a smooth and safe driving experience. This paper proposes a novel methodology for threat assessment for driving instances involving a cut-in vehicle. The methodology takes into consideration kinematics, vehicle dynamics, vehicle stability, road condition, and driving comfort.
Journal Article

Impact of Power Profile on the Estimation of Second Life Batteries Remaining Useful Life

2021-04-06
2021-01-0767
Second-life batteries (SLBs, automotive batteries that have lost their usefulness for vehicular applications) can provide low-cost environment-friendly solutions for grid-connected systems. The estimation of the remaining useful life (RUL) of SLBs is a fundamental step for the development of appropriate business models. This paper aims at unveiling correlations between the SLB's power profile and aging performance by defining appropriate metrics. A widely accepted empirical degradation model, that can predict calendar and cycling aging, is considered for this study. Several grid-connected power profiles are analyzed, such as peak shaving for DC-fast charge stations and frequency regulation. The results of this analysis show a correlation between the SLB's replacement rate with the minimum daily SoC.
Technical Paper

The Effects of Varying Penetration Rates of L4-L5 Autonomous Vehicles on Fuel Efficiency and Mobility of Traffic Networks

2020-04-14
2020-01-0137
With the current drive of automotive and technology companies towards producing vehicles with higher levels of autonomy, it is inevitable that there will be an increasing number of SAE level L4-L5 autonomous vehicles (AVs) on roadways in the near future. Microscopic traffic simulators that simulate realistic traffic flow are crucial in studying, understanding and evaluating the fuel usage and mobility effects of having a higher number of autonomous vehicles (AVs) in traffic under realistic mixed traffic conditions including both autonomous and non-autonomous vehicles. In this paper, L4-L5 AVs with varying penetration rates in total traffic flow were simulated using the microscopic traffic simulator Vissim on urban, mixed and freeway roadways. The roadways used in these simulations were replicas of real roadways in and around Columbus, Ohio, including an AV shuttle routes in operation.
Technical Paper

Benchmarking Computational Time of Dynamic Programming for Autonomous Vehicle Powertrain Control

2020-04-14
2020-01-0968
Dynamic programming (DP) has been used for optimal control of hybrid powertrain and vehicle speed optimization particularly in design phase for over a couple of decades. With the advent of autonomous and connected vehicle technologies, automotive industry is getting closer to implementing predictive optimal control strategies in real time applications. The biggest challenge in implementation of optimal controls is the limitation on hardware which includes processor speed, IO speed, and random access memory. Due to the use of autonomous features, modern vehicles are equipped with better onboard computational resources. In this paper we present a comparison between multiple hardware options for dynamic programming. The optimal control problem considered, is the optimization of travel time and fuel economy by tuning the torque split ratio and vehicle speed while maintaining charge sustaining operation.
Technical Paper

Model-Based Design of a Hybrid Powertrain Architecture with Connected and Automated Technologies for Fuel Economy Improvements

2020-04-14
2020-01-1438
Simulation-based design of connected and automated hybrid-electric vehicles is a challenging problem. The design space is large, the systems are complex, and the influence of connected and autonomous technology on the process is a new area of research. The Ohio State University EcoCAR Mobility Challenge team developed a comprehensive design and simulation approach as a solution. This paper covers the detailed simulation work conducted after initial design space reduction was performed to arrive at a P0-P4 hybrid vehicle with a gasoline engine. Two simulation environments were deployed in this strategy, each with unique advantages. The first was Autonomie, which is a commercial software tool that is well-validated through peer-reviewed studies. This allowed the team to evaluate a wide range of components in a robust simulation framework.
Technical Paper

Performance Evaluation of the Pass-at-Green (PaG) Connected Vehicle V2I Application

2020-04-14
2020-01-1380
In recent years, the trend in the automotive industry has been favoring the reduction of fuel consumption in vehicles with the help of new and emerging technologies, such as Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V) and Vehicle to Everything (V2X) communication and automated driving capability. As the world of transportation gets more and more connected through these technologies, the need to implement algorithms with V2I capability is amplified. In this paper, an algorithm called Pass at Green, utilizing V2I and vehicle longitudinal automation to modify the speed profile of a mid-size generic vehicle to decrease fuel consumption has been studied. Pass at Green (PaG) uses Signal Phase and Timing (SPaT) information acquired from upcoming traffic lights, which are the current phase of the upcoming traffic light and remaining time that the phase stays active.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

Application of Adversarial Networks for 3D Structural Topology Optimization

2019-04-02
2019-01-0829
Topology optimization is a branch of structural optimization which solves an optimal material distribution problem. The resulting structural topology, for a given set of boundary conditions and constraints, has an optimal performance (e.g. minimum compliance). Conventional 3D topology optimization algorithms achieve quality optimized results; however, it is an extremely computationally intensive task which is, in general, impractical and computationally unachievable for real-world structural optimal design processes. Therefore, the current development of rapid topology optimization technology is experiencing a major drawback. To address the issues, a new approach is presented to utilize the powerful abilities of large deep learning models to replicate this design process for 3D structures. Adversarial models, primarily Wasserstein Generative Adversarial Networks (WGAN), are constructed which consist of 2 deep convolutional neural networks (CNN) namely, a discriminator and a generator.
Technical Paper

Ultra-Low NOx Emission Prediction for Heavy Duty Diesel Applications Using a Map-Based Approach

2019-04-02
2019-01-0987
As vehicle emissions regulations become increasingly stringent, there is a growing need to accurately model aftertreatment systems to aid in the development of ultra-low NOx vehicles. Common solutions to this problem include the development of complex chemical models or expansive neural networks. This paper aims to present the development process of a simpler Selective Catalytic Reduction (SCR) conversion efficiency Simulink model for the purposes of modeling tail pipe NOx emission levels based on various inputs, temperature shifts and SCR locations, arrangements and/or sizes in the system. The main objective is to utilize this model to predict tail pipe NOx emissions of the EPA Federal Test Procedures for heavy-duty vehicles. The model presented within is focused exclusively on heavy-duty application compression ignition engines and their corresponding aftertreatment setups.
Technical Paper

A Physics-Based, Control-Oriented Turbocharger Compressor Model for the Prediction of Pressure Ratio at the Limit of Stable Operations

2019-04-02
2019-01-0320
Downsizing and boosting is currently the principal solution to reduce fuel consumption in automotive engines without penalizing the power output. A key challenge for controlling the boost pressure during highly transient operations lies in avoiding to operate the turbocharger compressor in its instability region, also known as surge. While this phenomenon is well known by control engineers, it is still difficult to accurately predict during transient operations. For this reason, the scientific community has directed considerable efforts to understand the phenomena leading to the onset of unstable behavior, principally through experimental investigations or high-fidelity CFD simulations. On the other hand, less emphasis has been placed on creating control-oriented models that adopt a physics-based (rather than data-driven) approach to predict the onset of instability phenomena.
X