Refine Your Search

Topic

Author

Search Results

Technical Paper

Modular Multilevel GaN Based Ultra-High Power Density Electric Power Conversion and Transmission on the Lunar Surface

2023-09-05
2023-01-1509
NASA’s Watts on the Moon Challenge is seeking solutions to transfer at least 1.065 kW power from a 120 V dc source to a 24-32 V dc load over a 3-km distance under the same environmental conditions as the Lunar surface (i.e., 77 K temperature and 1 mTorr pressure). The selected solution from the author’s team proposed utilizing two modular multilevel Gallium Nitride (GaN) based isolated dc-dc converters to connect the 120 V dc source with the 24-32 V dc load bank via 1.5 kV rated dc transmission lines. The modular multilevel converters feature frequency multiplication, high step-down voltage ratio and low device voltage stress. In the converters, GaN gate injection transistor (GaN GIT) and GaN High-Electron-Mobility Transistor (GaN HEMT) devices are chosen as switching devices, due to the merits of lower power loss, radiation hardness and ability to work under cryogenic and vacuum conditions.
Technical Paper

Effects of Anti-Sway Bar Separation on the Handling Characteristics of a SUV

2021-04-06
2021-01-0976
A single-vehicle crash involving an SUV led to the study of the failure of the anti-sway bar linkage and tire pressure and their relative effects on the handling characteristics of the vehicle. The SUV, having been involved in a rollover, was found with the anti-sway bar drop link disconnected from the suspension lower A-arm assembly. Also, after the crash, the tire pressure in the front tires on the subject vehicle was measured to be above the value specified by the SUV manufacturer; however, the pressure for one of the rear tires was measured to be roughly half of the SUV manufacturer’s recommended pressure. The other rear tire was deflated. The testing described herein addresses the question of what effects the anti-sway bar drop link disconnection or reduced rear axle tire pressure would have on the SUV’s pre-accident handling and driveability.
Journal Article

In-Vehicle Validation of Heavy-Duty Vehicle Fuel Savings via a Hierarchical Predictive Online Controller

2021-04-06
2021-01-0432
This paper presents the evolution of a series of connected, automated vehicle technologies from simulation to in-vehicle validation for the purposes of minimizing the fuel usage of a class-8 heavy duty truck. The results reveal that an online, hierarchical model-predictive control scheme, implemented via the use of extended horizon driver advisories for velocity and gear, achieves fuel savings comparable to predictions from software-in-the-loop (SiL) simulations and engine-in-the-loop (EiL) studies that operated with a greater degree of powertrain and chassis automation. The work of this paper builds on prior work that presented in detail this predictive control scheme that successively optimizes vehicle routing, arrival and departure at signalized intersections, speed trajectory planning, platooning, predictive gear shifting, and engine demand torque shaping.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

Cooperative Collision Avoidance in a Connected Vehicle Environment

2019-04-02
2019-01-0488
Connected vehicle (CV) technology is among the most heavily researched areas in both the academia and industry. The vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to pedestrian (V2P) communication capabilities enable critical situational awareness. In some cases, these vehicle communication safety capabilities can overcome the shortcomings of other sensor safety capabilities because of external conditions such as 'No Line of Sight' (NLOS) or very harsh weather conditions. Connected vehicles will help cities and states reduce traffic congestion, improve fuel efficiency and improve the safety of the vehicles and pedestrians. On the road, cars will be able to communicate with one another, automatically transmitting data such as speed, position, and direction, and send alerts to each other if a crash seems imminent. The main focus of this paper is the implementation of Cooperative Collision Avoidance (CCA) for connected vehicles.
Technical Paper

Model Order Reduction for x-In the Loop (xIL) Simulation of Automotive Transmissions

2019-04-02
2019-01-1042
Increasing complexity of automotive systems along with growing safety and performance requirements, is causing development cycle costs to swell. A common solution is to use a Model-Based Design (MBD) approach, particularly using x-In the Loop (xIL) simulation methods for Validation and Verification (V&V). MBD allows efficient workflow from offline control design using high-fidelity models to real time V&V using Hardware-in-the-Loop (HIL) simulations. It is very challenging to reduce the complex non-linear high-fidelity models to real-time capable models for HIL simulation. Current literature does not provide a standard approach for obtaining the HIL-capable reduced model for complex non-linear systems. In this paper we present an approach to perform model reduction in light of HIL-level requirements. The approach is presented using an example of a 10-speed automatic transmission. The system constitutes three subsystems - the hydraulic network, mechanical gearbox, and torque converter.
Technical Paper

Modeling, Control, and Adaptation for Shift Quality Control of Automatic Transmissions

2019-04-02
2019-01-1129
The parameters determining shift quality control in automatic transmissions are determined as part of the calibration of the transmission control. The resulting control system typically has three components: feedforward control, where the control output is determined before a gearshift; feedback control, where the control output is determined during the gearshift based on sensed feedback; and learning control (adaptation), where the feedforward or feedback controller parameters are modified after the current gearshift has ended and before the next similar gearshift begins. Gearshifts involving the same ratio change are referred to here as similar gearshifts, though such gearshifts may involve differences in other variables such as vehicle speed or engine torque.
Technical Paper

Sensor Selection for Selective Clutch Fault Isolation in Automatic Transmissions Based on Degree of Fault Tolerance

2019-04-02
2019-01-0117
Multiple clutches are engaged to achieve a specific gear ratio in an automatic transmission (AT). When an engaged clutch loses pressure during the AT operation, it is classified as a clutch stuck off fault. Automatic transmissions can enter in neutral states because of these faults and the vehicle can lose power at the wheels. Our previous work describes a systematic way of performing sensor placement analysis for diagnosis of clutch faults in automatic transmissions. In this paper, we approach the issue from the point of view similar to that of functional safety according to the ISO 26262 standard; where a transmission functional safety concept should address transitioning to a safe state in case of hazards associated with stuck off clutches.
Technical Paper

Effective Suppression of Surge Instabilities in Turbocharger Compression Systems through a Close-Coupled Compressor Inlet Restriction

2018-09-10
2018-01-1714
The current work demonstrates effective suppression of compression system surge instabilities by installing a variable cross-sectional flow area restriction within the inlet duct of a turbocharger centrifugal compressor operating on a bench-top facility. This restriction couples with the compressor, similar to stages in a multi-stage turbomachine, where the effective pressure ratio is the product of those for the restriction and compressor. During experiments at constant compressor rotational speed, the compressor is stable over the negatively sloped portion of the pressure ratio vs. flow rate characteristics, so the restriction is eliminated within this operating region to preserve compressor performance. At low flow rates, the slope of the compressor alone characteristics reaches a positive value, and the unrestricted compression system enters mild surge. Further reduction of flow rate with the unrestricted compressor inlet results in a sudden transition to deep surge instabilities.
Technical Paper

Kinematics Response of the PMHS Brain to Rotational Loading of the Head: Development of Experimental Methods and Analysis of Preliminary Data

2018-04-03
2018-01-0547
Experimentally derived brain response envelopes are needed to evaluate and validate existing finite element (FE) head models. Motion of the brain relative to the skull during rotational input was measured using high-speed biplane x-ray. To generate repeatable, reproducible, and scalable data, methods were developed to reduce experimental variance. An “extreme-energy” device was developed to provide a controlled input that is unaffected by specimen characteristics. Additionally, a stereotactic frame was used to deploy radiopaque markers at specific, pre-determined locations within the brain. One post-mortem human surrogate (PMHS) head specimen was subjected to repeat tests of a half-sine rotational speed pulse in the sagittal plane. The desired pulse had a peak angular speed of 40 rad/s and duration of 30 ms. Relative motion of the brain was quantified using radiopaque targets and high-speed biplane x-ray. Frontal and occipital intracranial pressure (ICP) were also measured.
Journal Article

Model-Based Wheel Torque and Backlash Estimation for Drivability Control

2017-03-28
2017-01-1111
To improve torque management algorithms for drivability, the powertrain controller must be able to compensate for the nonlinear dynamics of the driveline. In particular, the presence of backlash in the transmission and drive shafts excites sharp torque fluctuations during tip-in or tip-out transients, leading to a deterioration of the vehicle drivability and NVH. This paper proposes a model-based estimator that predicts the wheel torque in an automotive drivetrain, accounting for the effects of backlash and drive shaft flexibility. The starting point of this work is a control-oriented model of the transmission and vehicle drivetrain dynamics that predicts the wheel torque during tip-in and tip-out transients at fixed gear. The estimator is based upon a switching structure that combines a Kalman Filter and an open-loop prediction based on the developed model.
Technical Paper

Development of the Design of a Plug-In Hybrid-Electric Vehicle for the EcoCAR 3 Competition

2016-04-05
2016-01-1257
The design of a performance hybrid electric vehicle includes a wide range of architecture possibilities. A large part of the design process is identifying reasonable vehicle architectures and vehicle performance capabilities. The Ohio State University EcoCAR 3 team designed a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed with a 44-mile all-electric range. It also features an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak electric machine. This report details the design and modeling process followed by the Ohio State team during Year 1 of the competition. The process included researching the customer needs of the vehicle, determining team design goals, initial modeling, and selecting a vehicle architecture.
Technical Paper

Model and Controls Development of a Post-Transmission PHEV for the EcoCAR 3 Competition

2016-04-05
2016-01-1252
The Ohio State University EcoCAR 3 team is designing a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of reducing the environmental impact of the vehicle, the Ohio State Camaro has been designed to have a 44-mile all-electric range. The vehicle is to consist of an 18.9 kWh Li-ion energy storage system, a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85) fuel, a 5-speed automated manual transmission, and a 150 kW peak-power electric machine. This report details the model and controls development process followed by the Ohio State team during Year 1 of the EcoCAR 3 competition. The focus of the paper will be on overall development of a vehicle model, initial simulation results, and supervisory controls development. Finally, initial energy consumption results from the model and future improvements will be discussed.
Journal Article

Development of Refined Clutch-Damper Subsystem Dynamic Models Suitable for Time Domain Studies

2015-06-15
2015-01-2180
This study examines clutch-damper subsystem dynamics under transient excitation and validates predictions using a new laboratory experiment (which is the subject of a companion paper). The proposed models include multi-staged stiffness and hysteresis elements as well as spline nonlinearities. Several example cases such as two high (or low) hysteresis clutches in series with a pre-damper are considered. First, detailed multi-degree of freedom nonlinear models are constructed, and their time domain predictions are validated by analogous measurements. Second, key damping sources that affect transient events are identified and appropriate models or parameters are selected or justified. Finally, torque impulses are evaluated using metrics, and their effects on driveline dynamics are quantified. Dynamic interactions between clutch-damper and spline backlash nonlinearities are briefly discussed.
Journal Article

Start-Up Transient Vibration Analysis of a Vehicle Powertrain System Equipped with a Nonlinear Clutch Damper

2015-06-15
2015-01-2179
The transient vibration phenomenon in a vehicle powertrain system during the start-up (or shut-down) process is studied with focus on the development and experimental validation of the nonlinear powertrain models. First, a new nonlinear four-degree-of-freedom torsional powertrain model for this transient event, under instantaneous flywheel motion input, is developed and then validated with a vehicle start-up experiment. Second, the interactions between the clutch damper and the transmission transients are established via transient metrics. Third, a single-degree-of-freedom nonlinear model, focusing on the multi-staged clutch damper, is developed and its utility is then verified.
Journal Article

Modeling of Active and Passive Damping Patches with Application to a Transmission Casing Cover

2015-06-15
2015-01-2261
Combined active and passive damping is a recent trend that can be an effective solution to challenging NVH problems, especially for lightweight vehicle components that demand advanced noise and vibration treatments. Compact patches are of particular interest due to their small size and cost, however, improved modeling techniques are needed at the design stage for such methods. This paper presents a refined modeling procedure for side-by-side active and passive damping patches applied to thin, plate-like, powertrain casing structures. As an example, a plate with fixed boundaries is modeled as this is representative of real-life transmission covers which often require damping treatments. The proposed model is then utilized to examine several cases of active and passive patch location, and vibration reduction is determined in terms of insertion loss for each case.
Technical Paper

Estimation of Wet Clutch Friction Parameters in Automotive Transmissions

2015-04-14
2015-01-1146
In this paper, a new algorithm for the off-line estimation of wet clutch friction parameters is proposed for automotive transmissions, motivated by the usefulness of such an algorithm for diagnosing the condition of the clutch and transmission fluid in service. We assume that clutch pressure is measured, which is the case in dual clutch transmissions (DCT). The estimation algorithm uses measured rotational speeds and estimated accelerations at the input and output sides of a clutch, measured clutch pressures, and a simplified dynamic model of clutch friction to estimate the viscous and contact components of clutch friction torque. Coefficient of friction data is generated using the contact friction torque. A Stribeck friction model is fit to the data, and parameters in the model are then calculated by applying linear least squares estimation.
Technical Paper

Plant Modeling and Software Verification for a Plug-in Hybrid Electric Vehicle in the EcoCAR 2 Competition

2015-04-14
2015-01-1229
The EcoCAR 2: Plugging into the Future team at The Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 44 miles of all-electric range. The vehicle features an 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 50 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This paper details three years of modeling and simulation development for the OSU EcoCAR 2 vehicle. Included in this paper are the processes for developing simulation platform and model requirements, plant model and soft ECU development, test development and validation, automated regression testing, and controls and calibration optimization.
Technical Paper

A Rule-Based Control for Fuel-Efficient Automotive Air Conditioning Systems

2015-04-14
2015-01-0366
In a conventional passenger vehicle, the AC system is the largest ancillary load. This paper proposes a novel control strategy to reduce the energy consumption of the air conditioning system of a conventional passenger car. The problem of reducing the parasitic load of the AC system is first approached as a multi-objective optimization problem. Starting from a validated control-oriented model of an automotive AC system, an optimization problem is formalized to achieve the best possible fuel economy over a regulatory driving cycle, while guaranteeing the passenger comfort in terms of cabin temperature and reduce the wear of the components. To complete the formulation of the problem, a set of constraints on the pressure in the heat exchanger are defined to guarantee the safe operation of the system. The Dynamic Programming (DP), a numerical optimization technique, is then used to obtain the optimal solution in form of a control sequence over a prescribed driving cycle.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
X