Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

Modular Multilevel GaN Based Ultra-High Power Density Electric Power Conversion and Transmission on the Lunar Surface

2023-09-05
2023-01-1509
NASA’s Watts on the Moon Challenge is seeking solutions to transfer at least 1.065 kW power from a 120 V dc source to a 24-32 V dc load over a 3-km distance under the same environmental conditions as the Lunar surface (i.e., 77 K temperature and 1 mTorr pressure). The selected solution from the author’s team proposed utilizing two modular multilevel Gallium Nitride (GaN) based isolated dc-dc converters to connect the 120 V dc source with the 24-32 V dc load bank via 1.5 kV rated dc transmission lines. The modular multilevel converters feature frequency multiplication, high step-down voltage ratio and low device voltage stress. In the converters, GaN gate injection transistor (GaN GIT) and GaN High-Electron-Mobility Transistor (GaN HEMT) devices are chosen as switching devices, due to the merits of lower power loss, radiation hardness and ability to work under cryogenic and vacuum conditions.
Technical Paper

AV/ADAS Safety-Critical Testing Scenario Generation from Vehicle Crash Data

2022-03-29
2022-01-0104
This research leverages publicly available crash data to construct safety-critical scenarios focusing primarily on Level 3 Automated Driving Systems (ADS) safety assessment under highway driving conditions. NHTSA’s Crashworthiness Data System (CDS) has a rich dataset of representative crashes sampled from numerous Primary Sampling Units (PSUs) across the country. Each of these datasets includes the storyline, road geometry information, detailed description of actors involved in the crash, weather information, scene diagrams, crash images, and a myriad of other crash-specific details. The methodology adopted aims to generate critical scenarios from real-world driving to complement the existent regulatory tests for the validation of L3 ADS. For this work, a four-step approach was adopted to extract safety-critical scenarios from crash data.
Technical Paper

Effects of Anti-Sway Bar Separation on the Handling Characteristics of a SUV

2021-04-06
2021-01-0976
A single-vehicle crash involving an SUV led to the study of the failure of the anti-sway bar linkage and tire pressure and their relative effects on the handling characteristics of the vehicle. The SUV, having been involved in a rollover, was found with the anti-sway bar drop link disconnected from the suspension lower A-arm assembly. Also, after the crash, the tire pressure in the front tires on the subject vehicle was measured to be above the value specified by the SUV manufacturer; however, the pressure for one of the rear tires was measured to be roughly half of the SUV manufacturer’s recommended pressure. The other rear tire was deflated. The testing described herein addresses the question of what effects the anti-sway bar drop link disconnection or reduced rear axle tire pressure would have on the SUV’s pre-accident handling and driveability.
Technical Paper

Estimation of Cutting Parameters in Two-Stage Piercing to Reduce Edge Strain Hardening

2019-04-02
2019-01-1092
Edge fracture is a common problem when forming advanced high strength steels (AHSS). A particular case of edge fracture occurs during a collar forming/hole extrusion process, which is widely used in the sheet metal forming industry. This study attempts to relate the edge stretchability in collar forming to the strain hardening along the pierced edge; thus, Finite Element (FE) simulations can be used to reduce the number of experiments required to improve cutting settings for a given material and thickness. Using a complex-phase steel, CP-W 800 with thickness of 4.0 mm, a single-stage piercing operation is compared with a two-stage piercing operation, so called shaving, in terms of strains along the pierced edge, calculated by FE simulation. Results indicated that strains were reduced along the pierced edge by shaving.
Technical Paper

High Speed Ridged Fasteners for Multi-Material Joining

2019-04-02
2019-01-1117
Automobile manufacturers are reducing the weight of their vehicles in order to meet strict fuel economy legislation. To achieve this goal, a combination of different materials such as steel, aluminum and carbon fiber composites are being considered for use in vehicle bodies. The ability to join these different materials is an ongoing challenge and an area of research for automobile manufacturers. Multiridged fasteners are a viable option for this type of multi-material joining. Commercial systems exist and are being used in the industry, however, new ridged nail designs offer the potential for improvement in several areas. The goal of this paper is to prototype and test a safer flat-end fastener whilst not compromising on strength characteristics, to prevent injury to factory workers. The nails were prototyped using existing RIVTAC® nails.
Technical Paper

Accuracy Assessment of Three-Dimensional Site Features Generated with Aid of Photogrammetric Epipolar Lines in PhotoModeler and Using Minimal sUAS Imagery

2019-04-02
2019-01-0410
Photogrammetry is widely used in the accident reconstruction community to extract three-dimensional information from photographs. This article extends a prior study conducted by the authors, whereby model accuracy was assessed for a technique that exploited vehicle edges and epipolar line projections to construct 3D vehicle models, by examining 3D roadway and site features. To do so, artificial images were generated using an ideal computer-generated camera within a computer-assisted drawing environment to allow for a known reference model to compare with results produced using photogrammetry. A systematic study was undertaken by modeling the curvature, elevation, and super-elevation of a roadway and associated markings, sidewalks, and buildings, either by relying on discrete points or utilizing epipolar lines. The models were assessed for accuracy, and the sensitivity of the accuracy to camera elevation was considered.
Technical Paper

Effective Suppression of Surge Instabilities in Turbocharger Compression Systems through a Close-Coupled Compressor Inlet Restriction

2018-09-10
2018-01-1714
The current work demonstrates effective suppression of compression system surge instabilities by installing a variable cross-sectional flow area restriction within the inlet duct of a turbocharger centrifugal compressor operating on a bench-top facility. This restriction couples with the compressor, similar to stages in a multi-stage turbomachine, where the effective pressure ratio is the product of those for the restriction and compressor. During experiments at constant compressor rotational speed, the compressor is stable over the negatively sloped portion of the pressure ratio vs. flow rate characteristics, so the restriction is eliminated within this operating region to preserve compressor performance. At low flow rates, the slope of the compressor alone characteristics reaches a positive value, and the unrestricted compression system enters mild surge. Further reduction of flow rate with the unrestricted compressor inlet results in a sudden transition to deep surge instabilities.
Technical Paper

Kinematics Response of the PMHS Brain to Rotational Loading of the Head: Development of Experimental Methods and Analysis of Preliminary Data

2018-04-03
2018-01-0547
Experimentally derived brain response envelopes are needed to evaluate and validate existing finite element (FE) head models. Motion of the brain relative to the skull during rotational input was measured using high-speed biplane x-ray. To generate repeatable, reproducible, and scalable data, methods were developed to reduce experimental variance. An “extreme-energy” device was developed to provide a controlled input that is unaffected by specimen characteristics. Additionally, a stereotactic frame was used to deploy radiopaque markers at specific, pre-determined locations within the brain. One post-mortem human surrogate (PMHS) head specimen was subjected to repeat tests of a half-sine rotational speed pulse in the sagittal plane. The desired pulse had a peak angular speed of 40 rad/s and duration of 30 ms. Relative motion of the brain was quantified using radiopaque targets and high-speed biplane x-ray. Frontal and occipital intracranial pressure (ICP) were also measured.
Journal Article

Dynamic Analysis of a Hydraulic Body Mount with Amplitude and Preload Dependence

2017-06-05
2017-01-1909
The application of hydraulic body mounts between a pickup truck frame and cab to reduce freeway hop and smooth road shake has been documented in literature and realized in production vehicles. Previous studies have demonstrated the potential benefits of these devices, often through iterative prototype evaluation. Component dynamic characterization has also shown that these devices exhibit significant dependence to preload and dynamic amplitude; however, analysis of these devices has not addressed these dependences. This paper aims to understand the amplitude and preload dependence on the spectrally-varying properties of a production hydraulic body mount. This double-pumping, three-spring mount construction has a shared compliant element between the two fluid-filled chambers.
Technical Paper

Impact of Servo Press Motion on Hole Flanging of High Strength Steels

2017-03-28
2017-01-0311
The capabilities of the servo press for varying the ram speed during stroke and for adjusting the stroke length are well known. Various companies installed servo presses for blanking. Some of the considerations may include increase in productivity and flexibility in adjusting the ram stroke, noise reduction and improvement of edge quality of blanked edge. The objectives of this study are to determine the effect of ram (blanking) speed upon the edge quality, and the effect of multiple step blanking using several punch motions, during one blanking stroke.
Technical Paper

Impact Welding of Aluminum Alloy 6061 to Dual Phase 780 Steel Using Vaporizing Foil Actuator

2015-04-14
2015-01-0701
Vaporizing Foil Actuators (VFA) are based on the phenomenon of rapid vaporization of thin metallic foils and wires, caused by passage of a capacitor bank driven current on the order of 100 kA. The burst of the conductor is accompanied with a high-pressure pulse, which can be used for working metal at high strain rates. This paper focuses on the use of VFA for collision welding of dissimilar metals, in particular, aluminum and steel. Aluminum alloy 6061 sheets of 1 mm thickness were launched to velocities in excess of 650 m/s with input electrical energy of 8 kJ into 0.0762 mm thick, dog-bone shaped aluminum foil actuators. Target sheets made from dual phase steel (DP780) were impacted with the aluminum flyer sheet, and solid state impact welds were created. During mechanical testing, many samples failed outside the weld area, thereby indicating that the weld was stronger than the parent aluminum.
Technical Paper

A Rule-Based Control for Fuel-Efficient Automotive Air Conditioning Systems

2015-04-14
2015-01-0366
In a conventional passenger vehicle, the AC system is the largest ancillary load. This paper proposes a novel control strategy to reduce the energy consumption of the air conditioning system of a conventional passenger car. The problem of reducing the parasitic load of the AC system is first approached as a multi-objective optimization problem. Starting from a validated control-oriented model of an automotive AC system, an optimization problem is formalized to achieve the best possible fuel economy over a regulatory driving cycle, while guaranteeing the passenger comfort in terms of cabin temperature and reduce the wear of the components. To complete the formulation of the problem, a set of constraints on the pressure in the heat exchanger are defined to guarantee the safe operation of the system. The Dynamic Programming (DP), a numerical optimization technique, is then used to obtain the optimal solution in form of a control sequence over a prescribed driving cycle.
Technical Paper

Design of Robust Active Load-Dependent Vehicular Suspension Controller via Static Output Feedback

2013-09-24
2013-01-2367
In this paper, we focus on the active vehicular suspension controller design. A quarter-vehicle suspension system is employed in the system analysis and synthesis. Due to the difficulty and cost in the measuring of all the states, we only choose two variables to construct the feedback loop, that is, the control law is a static-output-feedback (SOF) control. However, the sensor reduction would induce challenges in the controller design. One of the main challenges is the NP-hard problem in the corresponding SOF controller design. In order to deal with this challenge, we propose a two-stage design method in which a state-feedback controller is firstly designed and then the state-feedback controller is used to decouple the nonlinear conditions. To better compensate for the varying vehicle load, a robust load-dependent control strategy is adopted. The proposed design methodology is applied to a suspension control example.
Technical Paper

Model Based Fault Diagnosis for Engine under Speed Control

2007-04-16
2007-01-0775
An appropriate fault diagnosis and Isolation (FDI) strategy is very useful to prevent system failure. In this paper, a model-based fault diagnosis strategy is developed for an internal combustion engine (ICE) under speed control. Engine throttle fault and the manifold pressure sensor fault are detected and isolated. A nonlinear observer based residual generation approach is proposed. Manifold pressure and throttle are observed. Fault codes are designed with redundancy to prevent bit error. Performance of fault diagnosis strategy has been evaluated with simulations.
Technical Paper

Acoustic Characteristics of Automotive Catalytic Converter Assemblies

2004-03-08
2004-01-1002
An experimental study of the acoustic characteristics of automotive catalytic converters is presented. The investigation addresses the effects and relative importance of the elements comprising a production catalytic converter assembly including the housing, substrate, mat and seals. Attenuation characteristics are measured for one circular and one oval catalytic converter geometry, each having 400 cell per square inch substrates. For each geometry, experimental results are presented to address the effect of individual components in isolation, and in combination with other assembly components. Additional experiments investigate the significance of acoustic paths around the substrate and through the peripheral wall of the substrate. The experimental results are compared to address the significance of each component on the overall attenuation.
Technical Paper

Biologically Inspired, Intelligent Muscle Material for Sensing and Responsive Delivery of Countermeasures

2000-07-10
2000-01-2514
The design and development of new biologically inspired technologies based on intelligent materials that are capable of sensing the levels of target biomolecules and, if needed, trigger appropriate countermeasures to regulate biological processes and rhythms of the astronauts is being undertaken in our laboratories. This is accomplished by coupling biologically inspired sensors that monitor the levels of the target biomolecules with intelligent polymeric materials that can regulate the release of a countermeasure. The technology developed here integrates sensors and artificial muscle material into a self-regulating device that can perform with minimal crew intervention. Further, it takes advantage of microfabrication technology to construct lightweight and robust responsive delivery systems. These “intelligent” devices address the need for the control and regulation of biological processes and rhythms under spaceflight conditions.
Technical Paper

Transmission Clutch Pressure Control System: Modeling, Controller Development and Implementation

2000-03-06
2000-01-1149
This paper describes the modeling, controller development, and implementation of a transmission clutch pressure control system. A nonlinear analytical model for the clutch pressure control system is developed and implemented using Matlab/Simulink, and validated by experimental data. The dominant dynamics are identified via model analysis, and a linear model is derived for controller design. Openloop (feedforward) and closed loop (feedback) pressure control strategies are designed and implemented in a test setup. Experimental results show that the combined feedforward and feedback control gives superior performance as compared to feedforward control alone.
Technical Paper

Throttle Flow Characterization

2000-03-06
2000-01-0571
A time-efficient throttle flow data collection method is described. It uses a sonic nozzle flow bench to measure air flow as a function of throttle angle and pressure in a manner analogous to on-engine dynamometer throttle flow characterization. Opening each sonic nozzle combination, then recording throttle downstream pressure and computed nozzle flow allows data to be taken in a fraction of the time normally needed. Throttle flow modeling considerations are then discussed.
Technical Paper

Integrated Approach to the Selection of Cost-Effective and Lean Process and Equipment in Forming

1999-03-01
1999-01-0423
A significant number of formed parts constitute the components of an automobile or aircraft. The formed blanks for the components are produced at different temperatures ranging from room temperature to 2250 degrees Fahrenheit for steel. Forming progressions convert a basic shape or geometry (a cylindrical billet, for example) of metal into a more complex shape close to the required final component geometry. The progression steps, choice of temperatures and equipment significantly impact the cost of the blank. A ‘Discriminating Cost Model’ was developed to capture the cost effectiveness of a given choice of process or equipment, and an AI (Artificial Intelligence) search algorithm implemented to quickly search through the large number of process and equipment selection options to arrive at the most cost effective choice. Two applications of this methodology to existing plant processes to significantly reduce cost and implement ‘lean’ principles of manufacturing are discussed.
X