Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Multi-Objective Optimization of the Fuel Cell Hybrid Electric Powertrain for a Class 8 Heavy-Duty Truck

2023-04-11
2023-01-0473
To decarbonize heavy-duty vehicles solely through electrification with batteries is challenging as large batteries are required for a meaningful range, severely impacting payload. Employment of hybrid electric powertrains where fuel cells are integrated with batteries can deliver increased range and payload. However, the energy balance between the fuel cell and the battery needs to be analyzed to optimize the sizing of the powertrain components. This study has performed a multi-objective optimization using genetic algorithm to obtain the optimum range and hydrogen consumption for a DAF 44 tons heavy-duty truck. The proposed truck powertrain has been numerically modelled in AVL CRUISE M software. The electric drive from Involution Technologies Ltd and Bramble Energy Ltd’s printed circuit board fuel cell (PCBFC) are used in the model.
Technical Paper

Design of Drive Cycle for Electric Powertrain Testing

2023-04-11
2023-01-0482
Drive cycles have been the official way to create standardized comparisons of fuel economy and emission levels between vehicles. Since the 1970s these have evolved to be more representative of real-world driving, with today’s standard being the World Harmonized Light Vehicle Testing Procedure. The performance of battery electric vehicles which consist of electric drives, battery, regenerative braking and their management systems may differ when compared to that of vehicles powered by conventional internal combustion engines. However, drive cycles used for evaluating the performance of vehicles, were originally developed for conventional powered vehicles. Moreover, the kinematic parameters that can distinguish the real-world performance of the differently powered vehicles are not fully known. This work aims to investigate the difference between vehicles powered by pure internal combustion engine, electric hybrid and pure electric drive.
Technical Paper

Frequency Coupling Analysis in Spark Ignition Engine Using Bispectral Method and Ensemble Empirical Mode Decomposition

2022-03-29
2022-01-0481
Internal combustion (IC) engines are the current dominant power source used in the automotive industry for hybrid vehicles. The combustion process of IC engines involves various parameters, which are linked to the overall performance of the driveline. Therefore, finding the frequency coupling between the manifold pressure, in-cylinder pressure and output crankshaft speed will provide an insight into the reasons for torque fluctuations and its effect on driveline performance. The present work introduces a methodology to analyze cylinder pressure, manifold pressure and instantaneous crank speed signals measured from a 4 cylinder, 1.6 Litre, Gasoline Direct Injection Engine at different speed conditions to identify the frequency coupling between these signals. This work uses Ensemble Empirical Mode Decomposition (EEMD) as a de-noising method and Bispectral analysis for examining the presence of a frequency coupling from the signals.
Technical Paper

Hydrogen Fuel Cell Vehicle for Mexico City

2020-04-14
2020-01-1169
The search for alternative fuel for transport vehicles and also replacement of internal combustion engines in order to reduce the harmful emissions have been forcing the vehicle manufacturers to innovate new technology solutions for meeting the stringent legislative targets. Mexico’s commitment for de-carbonisation of transport sector and meeting the environmental goals is shaping it especially, and with this, it favours the move towards electrification of the vehicles. The aim of the present work is to numerically evaluate the possibility of replacing the IC engine in the existing hybrid vehicles with the Hydrogen fuel cell system. This work modelled a Hydrogen fuel cell vehicle based on Toyota MIRAI and validated the fuel economy performance of the vehicle using experimental data. This validated model was used to estimate the fuel economy for real-world drive cycles generated in 2019 from Mexico City.
Technical Paper

Route Selection Strategy for Hybrid Vehicles Based on Energy Management and Real Time Drive Cycles

2018-04-03
2018-01-0995
Air pollution levels in an urban environment is a major concern for developed and developing countries alike. Governments around the world are constantly trying to control and reduce air pollution levels through regulations. Low emission zones are being designated in cities worldwide in order to reduce the level of pollutants in big cities. The automotive industry is affected by those regulations and they are becoming more demanding over the years. Present work is aimed at developing a control strategy for a hybrid vehicle in order to optimize the fuel economy and emission levels based on GPS information, driver specific driving characteristics and weather forecast data for a given route. It uses powertrain model of a hybrid vehicle for developing route and driver specific control strategy. The full vehicle model has two sub-models: a route selector and a powertrain optimization model.
X