Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling of Failure Modes Induced by Plastic Strain Localization in Dual Phase Steels

2008-04-14
2008-01-1114
Microstructure level inhomogeneities between the harder martensite phase and the softer ferrite phase render the dual phase (DP) steels more complicated failure mechanisms and associated failure modes compared to the conventionally used low alloy homogenous steels. This paper examines the failure mode DP780 steel under different loading conditions using finite element analyses on the microstructure levels. Micro-mechanics analyses based on the actual microstructures of DP steel are performed. The two-dimensional microstructure of DP steel was recorded by scanning electron microscopy (SEM). The plastic work hardening properties of the ferrite phase was determined by the synchrotron-based high-energy X-ray diffraction technique. The work hardening properties of the martensite phase were calibrated and determined based on the uniaxial tensile test results. Under different loading conditions, different failure modes are predicted in the form of plastic strain localization.
Technical Paper

Probabilistic Failure Prediction for Automotive Windshields Based on Strength and Flaw Distributions

2000-10-03
2000-01-2720
This paper describes a method for predicting structural failure probabilities for automotive windshields. The predictive model is supported by the data from strength tests performed on specimens of automotive glass. Evaluations of stresses can be based on finite element calculations, or measurements of the residual stresses that arise from fabrication. Failure probabilities for each subregion of a windshield are estimated from the local state of stress, the surface area or length (for edge elements) of the subregion, and statistical distributions of glass strengths. Example calculations are presented that show the relative contributions of edge stresses, surface stresses and residual stresses to calculated failure probabilities.
X