Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Fuel Property Effects of a Broad Range of Potential Biofuels on Mixing Control Compression Ignition Engine Performance and Emissions

2021-04-06
2021-01-0505
Conventional diesel engines will continue to hold a vital role in the heavy- and medium-duty markets for the transportation of goods along with many other uses. The ability to offset traditional diesel fuels with low-net-carbon biofuels could have a significant impact on reducing the carbon footprint of these vehicles. A prior study screened several hundred candidate biofuel blendstocks based on required diesel blendstock properties and identified 12 as the most promising. Eight representative biofuel blendstocks were blended at a 30% volumetric concentration with EPA certification ultra-low-sulfur diesel (ULSD) and were investigated for emissions and fuel efficiency performance. This study used a single cylinder engine (based on the Ford 6.7L engine) using Conventional Diesel Combustion (CDC), also known as Mixing Control Compression Ignition (MCCI). The density, cetane number, distillation curve and sooting tendency (using the yield sooting index method) of the fuels were measured.
Journal Article

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
Journal Article

Advancements and Opportunities for On-Board 700 Bar Compressed Hydrogen Tanks in the Progression Towards the Commercialization of Fuel Cell Vehicles

2017-03-28
2017-01-1183
Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Technical Paper

Diesel Particulate Oxidation Model: Combined Effects of Volatiles and Fixed Carbon Combustion

2010-10-25
2010-01-2127
Diesel particulate samples were collected from a light duty engine operated at a single speed-load point with a range of biodiesel and conventional fuel blends. The oxidation reactivity of the samples was characterized in a laboratory reactor, and BET surface area measurements were made at several points during oxidation of the fixed carbon component of both types of particulate. The fixed carbon component of biodiesel particulate has a significantly higher surface area for the initial stages of oxidation, but the surface areas for the two particulates become similar as fixed carbon oxidation proceeds beyond 40%. When fixed carbon oxidation rates are normalized to total surface area, it is possible to describe the oxidation rates of the fixed carbon portion of both types of particulates with a single set of Arrhenius parameters. The measured surface area evolution during particle oxidation was found to be inconsistent with shrinking sphere oxidation.
Technical Paper

Impacts of B20 Biodiesel on Cordierite Diesel Particulate Filter Performance

2009-11-02
2009-01-2736
Engine laboratory tests were conducted to assess the impact of B20 biodiesel on the performance of cordierite diesel particulate filters (DPFs). Test fuels included 20% soy based methyl ester blended into ultra low sulfur diesel fuel, and two ULSD on-road market fuels. B20 has a higher cetane number, boiling point and oxygen content than typical on-road diesel fuels. A comparative study was performed using a model year 2007 medium duty diesel truck engine. The aftertreatment system included a diesel oxidation catalyst (DOC) followed by a cordierite wall flow DPF. A laboratory-grade supplemental fuel doser was used in the exhaust stream for precise regeneration of the DPF. Tests revealed that the fuel dosing rate was higher and DOC fuel conversion efficiency was poorer for the B20 fuel during low exhaust temperature regenerations. The slip of B20 fuel past the DOC was shown to produce significantly higher exotherms in the DPF during regeneration.
Technical Paper

Challenges in Developing Hydrogen Direct Injection Technology for Internal Combustion Engines

2008-10-06
2008-01-2379
Development status and insight on a “research level” piezoelectric direct injection fuel injection system for prototype hydrogen Internal Combustion Engines (ICEs) is described. Practical experience accumulated from specialized material testing, bench testing and engine operation have helped steer research efforts on the fuel injection system. Recent results from a single cylinder engine are also presented, including demonstration of 45% peak brake thermal efficiency. Developing ICEs to utilize hydrogen can result in cost effective power plants that can potentially serve the needs of a long term hydrogen roadmap. Hydrogen direct injection provides many benefits including improved volumetric efficiency, robust combustion (avoidance of pre-ignition and backfire) and significant power density advantages relative to port-injected approaches with hydrogen ICEs.
Technical Paper

Effects of Manufacturing Processes and In-Service mperature Variations on the Properties of TRIP Steels

2007-04-16
2007-01-0793
This paper examines some key aspects of the manufacturing process that “ Transformation Induced Plasticity” (TRIP) steels would be exposed to, and systematically evaluate how the forming and thermal histories affect final strength and ductility of the material. We evaluate the effects of in-service temperature variations, such as under hood and hot/cold cyclic conditions, to determine whether these conditions influence final strength, ductility and energy absorption characteristics of several available TRIP steel grades. As part of the manufacturing thermal environment evaluations, stamping process thermal histories are included in the studies. As part of the in-service conditions, different pre-straining levels are included. Materials from four steel suppliers are examined. The thermal/straining history versus material property relationship is established over a full range of expected thermal histories and selected loading modes.
Technical Paper

Performance Evaluations of Aluminum Titanate Diesel Particulate Filters

2007-04-16
2007-01-0656
Over the past decade, regulations for mobile source emissions have become more stringent thus, requiring advances in emissions systems to comply with the new standards. For the popular diesel powered passenger cars particularly in Europe, diesel particulate filters (DPFs) have been integrated to control particulate matter (PM) emissions. Corning Incorporated has developed a new proprietary aluminum titanate-based material for filter use in passenger car diesel applications. Aluminum titanate (hereafter referred to as AT) filters were launched commercially in the fall of 2005 and have been equipped on more than several hundred thousand European passenger vehicles. Due to their outstanding durability, filtration efficiency and pressure drop attributes, AT filters are an excellent fit for demanding applications in passenger cars. Extensive testing was conducted on engine to evaluate the survivability and long-term thermo-mechanical durability of AT filters.
Technical Paper

Modeling of Friction Stir Welding (FSW) Process with Smooth Particle Hydrodynamics (SPH)

2006-04-03
2006-01-1394
Since its invention fifteen years ago, Friction Stir Welding (FSW) has found commercial applications in marine, aerospace, rail, and now automotive industries. Development of the FSW process for each new application, however, has remained largely empirical. Few detailed numerical modeling techniques have been developed that can explain and predict important features of the process physics. This is particularly true in the areas of material flow, mixing mechanisms, and void prediction. In this paper we present a novel modeling approach to simulate FSW processes that may have significant advantages over current traditional finite element or finite difference based methods. The proposed model is based on the Smoothed Particle Hydrodynamics (SPH) method.
Technical Paper

Safety Training for the Hydrogen Economy

2006-04-03
2006-01-0329
The Pacific Northwest National Laboratory (PNNL) and the Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Training and Education Center are helping to prepare emergency responders and permitting/code enforcement officials for their respective roles in the gradual transition to the hydrogen economy. Safety will be a critical component of the anticipated hydrogen transition. Public confidence goes hand in hand with perceived safety to such an extent that, without it, the envisioned transition is unlikely to occur. Stakeholders and the public must be reassured that hydrogen, although very different from gasoline and other conventional fuels, is no more dangerous. Ensuring safety in the hydrogen infrastructure will require a suitably trained emergency response force for containing the inevitable incidents as they occur, coupled with knowledgeable code officials to ensure that such incidents are kept to a minimum.
Technical Paper

Diesel Emission Control in Review – The Last 12 Months

2003-03-03
2003-01-0039
Driven mainly by tightening of regulations, advance diesel emission control technologies are rapidly advancing. This paper will review the field with the intent of highlighting representative studies that illustrate the state-of-the-art. First, the author makes estimates of the emission control efficiency targets for heavy and light duty applications. Given the emerging significance of ultrafines to health, and to emission control technologies, an overview of the significant developments in ultrafine particulate science is provided, followed by an assessment of filter technology. Major deNOx catalyst developments, in addition to SCR and LNT progress is described. Finally, system integration examples are provided. In general, progress is impressive and studies have demonstrated that high-efficiency systems are within reach in all sectors highway vehicle sectors. Engines are making impressive gains, and will increase the options for emission control.
Technical Paper

Review of Development, Properties and Packaging of Thinwall and Ultrathinwall Ceramic Substrates

2002-11-19
2002-01-3578
Driven by the worldwide automotive emission regulations, ceramic substrates were developed to serve as catalyst support. Since the introduction of Standard wall substrates in 1974, substrates with thinner walls and higher cell densities have been developed to meet the tighter emission requirements; Worldwide, the amount of Thinwall and Ultrathinwall substrates in series applications is increasing continuously. The properties of the substrates determine their performance regarding pressure drop, heat-up and conversion efficiency. These properties are analyzed, as well as the packaging process for Thinwall and Ultrathinwall substrates; A new packaging technique with lower pressure load is described.
Technical Paper

Plasma-Facilitated SCR of NOx in Heavy-Duty Diesel Exhaust

2001-09-24
2001-01-3570
This paper describes two independent studies on γ-alumina as a plasma-activated catalyst. γ-alumina (2.5 - 4.3 wt%) was coated onto the surface of mesoporous silica to determine the importance of aluminum surface coordination on NOx conversion in conjunction with nonthermal plasma. Results indicate that the presence of 5- and 6- fold aluminum coordination sites in γ-alumina could be a significant factor in the NOx reduction process. A second study examined the effect of changing the reducing agent on NOx conversion. Several hydrocarbons were examined including propene, propane, isooctane, methanol, and acetaldehyde. It is demonstrated that methanol was the most effective reducing agent of those tested for a plasma-facilitated reaction over γ-alumina.
Technical Paper

Effect of Windshield Design on High Speed Impact Resistance

2000-10-03
2000-01-2723
An axisymmetric finite element model is generated to simulate the windshield glass damage propagation subjected to impact loading of a flying object. The windshield glass consists of two glass outer layers laminated by a thin poly-vinyl butyral (PVB) layer. The constitutive behavior of the glass layers is simulated using brittle damage mechanics model with linear damage evolution. The PVB layer is modeled with linear viscoelastic solid. The model is used to predict and examine through-thickness damage evolution patterns on different glass surfaces and cracking patterns for different windshield designs such as variations in thickness and curvatures.
Technical Paper

A Feasibility Evaluation of a Thermal Plasma Fuel Reformer for Supplemental Hydrogen Addition to Internal Combustion Engines

1999-04-26
1999-01-2239
One scenario for reducing engine out NOx in a spark ignition engine is to introduce small amounts of supplemental hydrogen to the combustion process. The supplemental hydrogen enables a gasoline engine to run lean where NOx emissions are significantly reduced and engine efficiency is increased relative to stoichiometric operation. This paper reports on a mass and energy balance model that has been developed to evaluate the overall system efficiencies of a thermal reformer-heat exchanger system capable of delivering hydrogen to the air intake of a gasoline engine. The mass and energy balance model is utilized to evaluate the conditions where energy losses associated with fuel reformation may be offset by increases in engine efficiencies.
X