Refine Your Search

Topic

Author

Search Results

Technical Paper

Performance Evaluation of an Eco-Driving Controller for Fuel Cell Electric Trucks in Real-World Driving Conditions

2024-04-09
2024-01-2183
Range anxiety in current battery electric vehicles is a challenging problem, especially for commercial vehicles with heavy payloads. Therefore, the development of electrified propulsion systems with multiple power sources, such as fuel cells, is an active area of research. Optimal speed planning and energy management, referred to as eco-driving, can substantially reduce the energy consumption of commercial vehicles, regardless of the powertrain architecture. Eco-driving controllers can leverage look-ahead route information such as road grade, speed limits, and signalized intersections to perform velocity profile smoothing, resulting in reduced energy consumption. This study presents a comprehensive analysis of the performance of an eco-driving controller for fuel cell electric trucks in a real-world scenario, considering a route from a distribution center to the associated supermarket.
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

A Numerical Analysis of Terrain and Vehicle Characteristics in Off-Road Conditions through Semi-Empirical Tire Contact Modelling

2024-04-09
2024-01-2297
In the last decades, the locomotion of wheeled and tracked vehicles on soft soils has been widely investigated due to the large interest in planetary, agricultural, and military applications. The development of a tire-soft soil contact model which accurately represents the micro and macro-scale interactions plays a crucial role for the performance assessment in off-road conditions since vehicle traction and handling are strongly influenced by the soil characteristics. In this framework, the analysis of realistic operative conditions turns out to be a challenging research target. In this research work, a semi-empirical model describing the interaction between a tire and homogeneous and fine-grained soils is developed in Matlab/Simulink. The stress distribution and the resulting forces at the contact patch are based on well-known terramechanics theories, such as pressure-sinkage Bekker’s approach and Mohr-Coulomb’s failure criterion.
Technical Paper

PSD Profiles for Dynamic and Durability Tests of Military Off-Road Vehicle Racks

2023-04-11
2023-01-0107
In a military off-road vehicle, generally designed to operate in an aggressive operating environment, the typical comfort requirements for trucks and passenger cars are revised for robustness, safety and security. An example is the cabin space optimisation to provide easy access to many types of equipment required on-board. In this field, racks hung to the cabin chassis are generally used to support several electronic systems, like radios. The dynamic loads on a rack can reach high values in the operative conditions of a military vehicle. Rack failures should be prevented for the safety of driver, crew and load and the successful execution of a mission. Therefore, dynamic and durability tests of these components, including the fixtures to the vehicle, are required.
Technical Paper

Light Commercial Vehicle ADAS-Oriented Modelling: An Optimization-Based Conversion Tool from Multibody to Real-Time Vehicle Dynamics Model

2023-04-11
2023-01-0908
In the last few years, the number of Advanced Driver Assistance Systems (ADAS) on road vehicles has been increased with the aim of dramatically reducing road accidents. Therefore, the OEMs need to integrate and test these systems, to comply with the safety regulations. To lower the development cost, instead of experimental testing, many virtual simulation scenarios need to be tested for ADAS validation. The classic multibody vehicle approach, normally used to design and optimize vehicle dynamics performance, is not always suitable to cope with these new tasks; therefore, real-time lumped-parameter vehicle models implementation becomes more and more necessary. This paper aims at providing a methodology to convert experimentally validated light commercial vehicles (LCV) multibody models (MBM) into real-time lumped-parameter models (RTM).
Technical Paper

Impact of Different LCI Modelling Scenarios on the LCA Results, A Case Study for the Automotive Sector

2023-04-11
2023-01-0884
Since vehicles are comprised of thousands of components, it is essential to reduce the Life Cycle Inventory (LCI) modelling workload. This study aims to compare different LCI modeling workload-reducing scenarios to provide a trade-off between the workload efforts and result accuracy. To achieve the optimal balance between computational effort and data specification requirements, the driver seat is used as a case study, instead of the entire vehicle. When all the components of a conventional light-duty commercial vehicle are sorted by mass descending order, seats are among the first five. In addition, unlike the other components, seats are comprised of metals as well as a wide range of plastics and textiles, making them a representative test case for a general problem formulation. In this way, methodology and outcomes can be reasonably extended to the entire vehicle.
Technical Paper

State of the Art and Future Trends of Electrification in Agricultural Tractors

2022-09-16
2022-24-0002
Hybrid and electric powertrains are experiencing a consistent growth in the automotive field demonstrating their effectiveness in reducing pollutant emissions especially in urban areas. Recently these technologies started to be investigated in the field of work machineries as possible solution to meet increasingly stricter regulations on pollutant emissions. The construction field was the first to recognize the benefits of a partial or total electrification of a work machinery. Nowadays, the consolidation of the technology allowed for its consistent diffusion in the more conservative agricultural field where manufacturers are struggling to meet emissions regulations without losing in terms of work performance. Tractors manufacturers are the most affected actors because of the difficulty to integrate bulky gas aftertreatment systems on board of their vehicle.
Technical Paper

Co-Simulation of a Specialized Tractor for Autonomous Driving in Orchards

2022-09-16
2022-24-0025
The concept of autonomous driving is becoming increasingly familiar in the automotive and “in-door” automation systems fields. Furthermore, the industrial development is focusing its efforts on industry 4.0, whose some main features are data transfer, programming, systems interconnection and automation. The agricultural sector just recently has experienced the first examples of autonomous agricultural vehicles, although agricultural mechanization has reached a good level of automation. Indeed, many examples of automatic machineries are already present in the market such as little robots for the execution of some operations. This work focuses on modelling and simulation of a self-driving orchard tractor. The main goal was to reproduce the behaviour of the specialized vehicle, moving in an orchard or a vineyard and conducting automatic or semi-automatic operations.
Journal Article

Lightweight Components Manufactured with In-Production Composite Scraps: Mechanical Properties and Application Perspectives

2022-06-14
2022-37-0027
In the last years, the design in the automotive sector is mainly led by emission reduction and circular economy. To satisfy the first perspective, composites materials are being increasingly used to produce lightweight structural and semi-structural components. However, the automotive mass production arises the problem of the end-of-life disposal of the vehicle and the reduction of the wastes environmental impact. The circular economy of the composite materials has therefore become a challenge of primary importance for car manufacturers and tier 1 suppliers. It is necessary to pursue a different economic model, combining traditional raw materials with the intensive use of materials from recycling processes. New technologies are being studied and developed concerning the reuse of in-line production scraps with out-of-autoclave process that makes them desirable for high production rate applications.
Technical Paper

Methodology and Application on Load Monitoring Using Strain-Gauged Bolts in Brake Calipers

2022-03-29
2022-01-0922
As technology evolves, the number of sensors and available data on vehicles grow exponentially. In this context, it is essential to use sensors for monitoring key components, increasing safety and reliability, and gathering data useful for mechanical dimensioning and control systems. This paper presents an application of strain-gauged bolts on brake calipers fixation of two electric vehicles. With this approach it was possible to evaluate the loads applied to the brake pads fixation zone and correlate them with braking behavior, therefore gaining insights on braking conditions and system state for an improved braking function control. The goal of the study is analyzing the strengths and limitations of the method and proposing developments to deploy it in real applications. This is particularly important and novel for electric vehicles, where powertrains can create positive/negative torques and generate complex interactions with braking system.
Technical Paper

A Methodology for Parameter Estimation of Nonlinear Single Track Models from Multibody Full Vehicle Simulation

2021-04-06
2021-01-0336
In vehicle dynamics, simple and fast vehicle models are required, especially in the framework of real-time simulations and autonomous driving software. Therefore, a trade-off between accuracy and simulation speed must be pursued by selecting the appropriate level of detail and the corresponding simplifying assumptions based on the specific purpose of the simulation. The aim of this study is to develop a methodology for map and parameter estimation from multibody simulation results, to be used for simplified vehicle modelling focused on handling performance. In this paper, maneuvers, algorithms and results of the parameter estimation are reported, together with their integration in single track models with increasing complexity and fidelity. The agreement between the multibody model, used as reference, and four single track models is analyzed and discussed through the evaluation of the correlation index.
Technical Paper

Influence of Micro Geometry Modification on Gear Dynamics

2020-04-14
2020-01-1323
Gearbox behavior is strictly affected by gears, shaft, bearings and casing stiffnesses. As a matter of fact, their contribution to gear dynamics is fundamental for mechanical transmissions design. In this paper a semi-analytical model developed for the estimation of the dynamic behavior of two mating gears is presented and tested on two case studies. Starting with the estimation of the Static Transmission Error, intended as the difference between the theoretical and actual angular position between the two mating gears, the dynamic behavior of the mating elements is estimated by means of a Dynamic Model. The Dynamic Model takes into account the gears, the contact between teeth exchanging loads and the other mechanical elements reduced by means of a DOF reduction technique. Based on the block-oriented approach, Dynamic Model allows the user to easily manage the complexity of the system with further or less elements by adding or removing DOFs.
Technical Paper

Steering Behavior of an Articulated Amphibious All-Terrain Tracked Vehicle

2020-04-14
2020-01-0996
This paper presents a study related to an Articulated Amphibious All-Terrain Tracked Vehicle (ATV) characterized by a modular architecture. The ATV is composed by two modules: the first one hosts mainly the vehicle engine and powertrain components, meanwhile the second one can be used for goods transportation, personnel carrier, crane and so on. The engine torque is transmitted to the front axle sprocket wheel of each module and finally distributed on the ground through a track mechanism. The two modules are connected through a multiaxial joint designed to guarantee four relative degrees of freedom. To steer the ATV, an Electro Hydraulic Power System (EHPS) is adopted, thus letting the vehicle steerable on any kind of terrain without a differential tracks speed. The paper aims to analyze the steady-state lateral behavior of the ATV on a flat road, through a non-linear mathematical vehicle model built in Matlab/Simulink environment.
Journal Article

Hardware and Virtual Test-Rigs for Automotive Steel Wheels Design

2020-04-14
2020-01-1231
The aim of this paper is to study in deep the peculiar test-rigs and experimental procedures adopted to the fulfilment of the principal requirements of automotive steel wheels, in particular regarding fatigue damaging. In the discussion, the standard requirements, the OEM specifications and the dimensional and geometric tolerances are approached. As result of an increasingly necessity to improve the performance of the components, innovative virtual test benches are presented. Differently from their traditional precursors, virtual test-rigs give an extended view of the physical behaviour of the component as the possibility to monitor stress-strain distribution in deep. In the first section, the state of the art and the specifications are listed. Secondly, the adopted hardware test-rigs as the experimental tests are described in detail. In the third one, proposed virtual test-rig is discussed.
Technical Paper

Test Bench for Static Transmission Error Evaluation in Gears

2020-04-14
2020-01-1324
In this paper a test bench for measuring the Static Transmission Error of two mating gears is presented and a comparison with the results obtained with the commercial software GeDy TrAss is shown. Static Transmission Error is considered as the main source of overloads and Noise, Vibration and Harshness issues in mechanical transmissions. It is defined as the difference between the theoretical angular position of two gears under load in quasi-static conditions and the real one. This parameter strictly depends on the applied torque and the tooth macro and micro-geometry. The test bench illustrated in this work is designed to evaluate the actual Static Transmission Error of two gears under load in quasi-static conditions. In particular, this testbed can be divided in two macro elements: the first one is the mechanism composed by weights and pulleys that generates a driving and a braking torque up to 500 Nm.
Technical Paper

Customer Oriented Vehicle Dynamics Assessment for Autonomous Driving in Highway

2019-04-02
2019-01-1020
Autonomous Driving is one of the main subjects of academic research and one important trend in the automotive industry. With the advent of self-driving vehicles, the interest around trajectory planning raises, in particular when a customer-oriented analysis is performed, since more and more the carmakers will have to pay attention to the handling comfort. With that in mind, an experimental approach is proposed to assess the main characteristics of human driving and gain knowledge to enhance quality of autonomous vehicles. Focusing on overtaking maneuvers in a highway environment, four comfort indicators are proposed aiming to capture the key aspects of the chosen paths of a heterogeneous cohort. The analysis of the distribution of these indicators (peak to peak lateral acceleration, RMS lateral acceleration, Smoothness and Jerk) allowed the definition of a human drive profile.
Technical Paper

Road to Virtual Tuning: New Physical Lump Model and Test Protocol to Support Damper Tuning in Hyundai Motor Europe Technical Center

2019-04-02
2019-01-0855
Vehicle dynamics is a fundamental part of vehicle performance. It combines functional requirements (i.e. road safety) with emotional content (“fun to drive”, “comfort”): this balance is what characterizes the car manufacturer (OEM) driving DNA. To reach the customer requirements on Ride & Handling, integration of CAE and testing is mandatory. Beside of cutting costs and time, simulation helps to break down vehicle requirements to component level. On chassis, the damper is the most important component, contributing to define the character of the vehicle, and it is defined late, during tuning, mainly by experienced drivers. Usually 1D lookup tables Force vs. Velocity, generated from tests like the standard VDA, are not able to describe the full behavior of the damper: different dampers display the same Force vs. Velocity curve but they can give different feeling to the driver.
Technical Paper

Gearbox Paradigm: A Support for Quick and Effective Gearbox Design

2019-04-02
2019-01-0806
The complexity of automotive market, the request of new gearbox layout able to improve the efficiency of a vehicle and the requirement of quick and effective design of gearboxes push the designers to seek new technologies, new layouts, new solutions. The typical development of a gearbox requires a lot of time and engineers' effort and it often implies a lot of time to define the right layout. The idea of developing a "paradigm" able to guide the designer through the design process seems to be effective. Starting from the experience of a code called "Engine Paradigm" where such idea was firstly implemented, the authors propose in the present paper the development of a code able to suggest a first attempt design of a gearbox. The "Gearbox Paradigm" code requires few data introduction, as torque, power, number of gears, some geometrical constraints such as the axes gap the gearbox layout, and the code elaborates a proposal of CAD design of a gearbox.
Technical Paper

An Integrated Methodology for 0D Map-Based Powertrain Modelling Applied to a 48 V Mild-Hybrid Diesel Passenger Car

2018-09-10
2018-01-1659
Nowadays, the 48 V vehicle architecture seems to be the perfect bridge between the 12 V system and the costly High Voltage (HV) electrification towards the crucial goal of CO2 and pollutants emissions reduction in combination with enhanced performance. However, this approach leads to an increased complexity in the interaction between different sub-systems targeting the optimization of the Energy Management System (EMS). Therefore, it becomes essential to perform a preliminary hardware assessment, exploring the interactions between the different components and quantifying the cost vs benefit trade-off. To this purpose, an integrated experimental/numerical methodology has been adopted: a comprehensive map-based Hybrid Electric Vehicle (HEV) model has been built, allowing the simulation of a variety of hybrid architectures, including both HV and 48 V systems.
Technical Paper

Numerical Assessment of the CO2 Reduction Potential of Variable Valve Actuation on a Light Duty Diesel Engine

2018-05-30
2018-37-0006
The increasingly demanding targets in terms of CO2 reduction lead to the adoption of engine technologies left so far for innovation. In diesel engines, some of the primary interests in adopting an advanced air management system, as Variable Valve Actuation (VVA), are related to Miller cycle enabling, and valve timing optimization. In this context, a numerical study was carried out in order to evaluate the impact of VVA on passenger car 4-cylinder diesel engine, 1.6 liters. The engine model, developed in GT-SUITE, features a predictive combustion model (DIPulse) and it is coupled with a fully predictive fuel injector model for the simulation of complex injection patterns. 3 different VVA techniques were evaluated, all targeting CO2 reduction: Late Exhaust Valve Opening (LEVO), Exhaust Phasing, and Late Inlet Valve Closure (LIVC) for enabling Miller cycle.
X