Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Aerodynamics' Influence on Performance in Human-Powered Vehicles for Sustainable Transportation

2024-06-12
2024-37-0028
The issue of greenhouse gas (GHG) emissions from the transportation sector is widely acknowledged. Recent years have witnessed a push towards the electrification of cars, with many considering it the optimal solution to address this problem. However, the substantial battery packs utilized in electric vehicles contribute to a considerable embedded ecological footprint. Research has highlighted that, depending on the vehicle's size, tens or even hundreds of thousands of kilometers are required to offset this environmental burden. Human-powered vehicles (HPVs), thanks to their smaller size, are inherently much cleaner means of transportation, yet their limited speed impedes widespread adoption for mid-range and long-range trips, favoring cars, especially in rural areas. This paper addresses the challenge of HPV speed, limited by their low input power and non-optimal distribution of the resistive forces.
Technical Paper

Development of a Soft-Actor Critic Reinforcement Learning Algorithm for the Energy Management of a Hybrid Electric Vehicle

2024-06-12
2024-37-0011
In recent years, the urgent need to fully exploit the fuel economy potential of the Electrified Vehicles (xEVs) through the optimal design of their Energy Management System (EMS) have led to an increasing interest in Machine Learning (ML) techniques. Among them, Reinforcement Learning (RL) seems to be one of the most promising approaches thanks to its peculiar structure, in which an agent is able to learn the optimal control strategy through the feedback received by a direct interaction with the environment. Therefore, in this study, a new Soft Actor-Critic agent (SAC), which exploits a stochastic policy, was implemented on a digital twin of a state-of-the-art diesel Plug-in Hybrid Electric Vehicle (PHEV) available on the European market. The SAC agent was trained to enhance the fuel economy of the PHEV while guaranteeing its battery charge sustainability.
Technical Paper

Robust Adaptive Control for Dual Fuel Injection Systems in Gasoline Engines

2024-04-09
2024-01-2841
The paper presents a robust adaptive control technique for precise regulation of a port fuel injection + direct injection (PFI+DI) system, a dual fuel injection configuration adopted in modern gasoline engines to boost performance, fuel efficiency, and emission reduction. Addressing parametric uncertainties on the actuators, inherent in complex fuel injection systems, the proposed approach utilizes an indirect model reference adaptive control scheme. To accommodate the increased control complexity in PFI+DI and the presence of additional uncertainties, a nonlinear plant model is employed, incorporating dynamics of the exhaust burned gas fraction. The primary objective is to optimize engine performance while minimizing fuel consumption and emissions in the presence of uncertainties. Stability and tracking performance of the adaptive controller are evaluated to ensure safe and reliable system operation under various conditions.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Maximum Pulling Force Calculation of Permanent Magnet Tractor Motors in Electric Vehicle Applications

2024-04-09
2024-01-2217
In electric vehicle applications, the majority of the traction motors can be categorized as Permanent Magnet (PM) motors due to their outstanding performance. As indicated in the name, there are strong permanent magnets used inside the rotor of the motor, which interacts with the stator and causes strong magnetic pulling force during the assembly process. How to estimate this magnetic pulling force can be critical for manufacturing safety and efficiency. In this paper, a full 3D magnetostatic model has been proposed to calculate the baseline force using a dummy non-slotted cylinder stator and a simplified rotor for less meshing elements. Then, the full 360 deg model is simplified to a half-pole model based on motor symmetry to save the simulation time from 2 days to 2 hours. A rotor position sweep was conducted to find the maximum pulling force position. The result shows that the max pulling force happens when the rotor is 1% overlapping with the stator core.
Technical Paper

Approaches for Developing and Evaluating Emerging Partial Driving Automation System HMIs

2024-04-09
2024-01-2055
Level 2 (L2) partial driving automation systems are rapidly emerging in the marketplace. L2 systems provide sustained automatic longitudinal and lateral vehicle motion control, reducing the need for drivers to continuously brake, accelerate and steer. Drivers, however, remain critically responsible for safely detecting and responding to objects and events. This paper summarizes variations of L2 systems (hands-on and/or hands-free) and considers human drivers’ roles when using L2 systems and for designing Human-Machine Interfaces (HMIs), including Driver Monitoring Systems (DMSs). In addition, approaches for examining potential unintended consequences of L2 usage and evaluating L2 HMIs, including field safety effect examination, are reviewed. The aim of this paper is to guide L2 system HMI development and L2 system evaluations, especially in the field, to support safe L2 deployment, promote L2 system improvements, and ensure well-informed L2 policy decision-making.
Technical Paper

Enhanced Longitudinal Vehicle Speed Control for an Autonomous Gas-Engine Vehicle: Improving Performance and Efficiency

2024-04-09
2024-01-2059
A linear parameter-varying model predictive control (LPVMPC) is proposed to enhance the longitudinal vehicle speed control of a gas-engine vehicle, with potential application in autonomous vehicles. To achieve this objective, an advanced vehicle dynamic model and a sophisticated fuel consumption model are derived, forming a control-oriented model for the proposed control system. The vehicle dynamic model accurately captures the motions of the tires and the vehicle body. The fuel consumption model incorporates new powertrain modes such as automatic engine stop/start, active fuel management, and deceleration fuel cut-off, etc. The performance of the proposed LPV-MPC is evaluated by comparing it to a PID controller. Both simulation tests and vehicle-in-the-loop tests demonstrate the superior performance of the proposed controller. The results indicate that the LPV-MPC provides improved longitudinal vehicle speed control and reduced fuel consumption.
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

Innovative Zero-Emissions Braking System: Performance Analysis Through a Transient Braking Model

2024-04-09
2024-01-2553
This paper presents the analysis of an innovative braking system as an alternative and environmentally friendly solution to traditional automotive friction brakes. The idea arose from the need to eliminate emissions from the braking system of an electric vehicle: traditional brakes, in fact, produce dust emissions due to the wear of the pads. The innovative solution, called Zero-Emissions Driving System (ZEDS), is a system composed of an electric motor (in-wheel motor) and an innovative brake. The latter has a geometry such that it houses MagnetoRheological Fluid (MRF) inside it, which can change its viscous properties according to the magnetic field passing through it. It is thus an electro-actuated brake, capable of generating a magnetic field passing through the fluid and developing braking torque. A performance analysis obtained by a simulation model built on Matlab Simulink is proposed.
Technical Paper

Electric vehicle predictive thermal comfort management with solar load estimation

2024-04-09
2024-01-2607
Electric vehicles (EV) present distinctive challenges compared to ICE (Internal Combustion Engine) powered counterparts. Cabin heating and air-conditioning stand out among them, especially cabin heating in cold weather, owing to its outsized effect on drivable range of the vehicle. Efficient management of the cabin thermal system has the potential to improve vehicle range without compromising passenger comfort. A method to improve cabin thermal system regulation by effectively leveraging the solar load on the vehicle is proposed in this work. The methodology utilizes connectivity and mapping data to predict the solar load over a future time horizon. Typically, the solar load is treated as an unmeasured external disturbance which is compensated with control. It can however be treated as an estimated quantity with potential to enable predictive control. The solar load prediction, coupled with a passenger thermal comfort model, enables preemptive thermal system control over a route.
Technical Paper

Electric vehicle battery health aware DC fast-charging recommendation system

2024-04-09
2024-01-2604
DC fast charging (DCFC) also referred to as L3 charging, is the fastest charging technology to replenish the drivable range of an electric vehicle. DCFC provides the convenience of faster charging time compared to L1 and L2 at the expense of potentially increased battery health degradation. It is known to accelerate battery capacity fade leading to reduced range and lifetime of the EV battery. While there are active efforts and several means to reduce the downsides of DCFC at cell chemistry level, this trade-off is still an important consideration for most battery cells in automotive propulsion applications. Since DCFC is a customer driven technology, informing drivers of the trade-off of each DCFC event can potentially result in better outcomes for the EV battery life. Traditionally, the driver is advised to limit DCFC events without providing quantifiable metrics to inform their decisions during EV charging.
Technical Paper

3DOF Vehicle Dynamics Model for Fuel Consumption Estimation

2024-04-09
2024-01-2757
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track.
Technical Paper

A Numerical Analysis of Terrain and Vehicle Characteristics in Off-Road Conditions through Semi-Empirical Tire Contact Modelling

2024-04-09
2024-01-2297
In the last decades, the locomotion of wheeled and tracked vehicles on soft soils has been widely investigated due to the large interest in planetary, agricultural, and military applications. The development of a tire-soft soil contact model which accurately represents the micro and macro-scale interactions plays a crucial role for the performance assessment in off-road conditions since vehicle traction and handling are strongly influenced by the soil characteristics. In this framework, the analysis of realistic operative conditions turns out to be a challenging research target. In this research work, a semi-empirical model describing the interaction between a tire and homogeneous and fine-grained soils is developed in Matlab/Simulink. The stress distribution and the resulting forces at the contact patch are based on well-known terramechanics theories, such as pressure-sinkage Bekker’s approach and Mohr-Coulomb’s failure criterion.
Technical Paper

Transient Aerodynamics Simulations of a Passenger Vehicle during Deployment of Rear Spoiler

2024-04-09
2024-01-2536
In the context of vehicle electrification, improving vehicle aerodynamics is not only critical for efficiency and range, but also for driving experience. In order to balance the necessary trade-offs between drag and downforce without significant impact on the vehicle styling, we see an increasing amount of active aerodynamic solutions on high-end passenger vehicles. Active rear spoilers are one of the most common active aerodynamic features. They deploy at high vehicle speed when additional downforce is required [1, 2]. For a vehicle with an active rear spoiler, the aerodynamic performance is typically predicted through simulations or physical testing at different static spoiler positions. These positions range from fully stowed to fully deployed. However, this approach does not provide any information regarding the transient effects during the deployment of the rear spoiler, which can be critical to understanding key performance aspects of the system.
Technical Paper

A 3-D CFD Investigation of Ball Bearing Weir Geometries and Design Considerations for Lubrication

2024-04-09
2024-01-2439
The study focuses on understanding the air and oil flow characteristics within a ball bearing during high-speed rotation, with a particular emphasis on optimizing frictional heat dissipation and oil lubrication methods. Computational fluid dynamics (CFD) techniques are employed to analyze the intricate three-dimensional airflow and oil flow patterns induced by the motion of rotating and orbiting balls within the bearing. A significant challenge in conducting three-dimensional CFD studies lies in effectively resolving the extremely thin gaps existing between the balls, races, and cages within the bearing assembly. In this research, we adopt the ball-bearing structured meshing strategy offered by Simerics-MP+ to meticulously address these micron-level clearances, while also accommodating the rolling and rotation of individual balls. Furthermore, we investigate the impact of different designs of the lubrication ports to channel oil to other locations compared to the ball bearings.
Technical Paper

Electrification and Control of a 1:5 Scale Vehicle for Automotive Testing Methodologies

2024-04-09
2024-01-2271
The design and testing of innovative components and control logics for future vehicular platform represents a challenging task in the automotive field. The use of scale model vehicles constitutes an interesting alternative for testing assessment by decreasing time and cost efforts with a potential benefit in terms of safety. The target of this research work is the development of a customized scale vehicle platform for verifying and validating innovative control strategies in safe conditions and with cost reduction. Consequently, the electrification of a radio-controlled 1:5 scale vehicle is carried out and a customized remote real-time controller is installed onboard. One of the main features of this commercial product is its modular characteristics that allows the modification of some component properties, such as the viscous coefficient of the shock absorbers, the stiffness of the springs and the suspension geometry.
Technical Paper

Torque Ripple Cancellation to Reduce Electric Motor Noise for Electric Vehicles

2024-04-09
2024-01-2215
Electric motor whine is a major NVH source for electric vehicles. Traditional mitigation methods focus on e-motor hardware optimization, which requires long development cycles and may not be easily modified when the hardware is built. This paper presents a control- and software-based strategy to reduce the most dominant motor order of an IPM motor for General Motors’ Ultium electric propulsion system, using the patented active Torque Ripple Cancellation (TRC) technology with harmonic current injection. TRC improves motor NVH directly at the source level by targeting the torque ripple excitations, which are caused by the electromagnetic harmonic forces due to current ripples. Such field forces are actively compensated by superposition of a phase-shifted force of the same spatial order by using of appropriate current.
Technical Paper

Development of Robust Traction Power Inverter Residing in Integrated Power Electronics for Ultium Electric Vehicles

2024-04-09
2024-01-2211
General Motors (GM) is working towards a future world of zero crashes, zero emissions and zero congestion. It’s “Ultium” platform has revolutionized electric vehicle drive units to provide versatile yet thrilling driving experience to the customers. Three variants of traction power inverter modules (TPIMs) including a dual channel inverter configuration are designed in collaboration with LG Magna e-Powertrain (LGM). These TPIMs are integrated with other power electronics components inside Integrated power electronics (IPE) to eliminate redundant high voltage connections and increase power density. The developed power module from LGM has used state-of-the art sintering technology and double-sided cooled structure to achieve industry leading performance and reliability. All the components are engineered with high level of integration skills to utilize across TPIM variants.
Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

Electric Motor Noise Reduction with Stator Mounted NVH Insert Ring

2024-04-09
2024-01-2205
Electric motor noise mitigation is a challenge in electric vehicles (EVs) due to the lack of engine masking noise. The design of the electric motor mounting configuration to the motor housing has significant impacts on the radiated noise of the drive unit. The stator can be bolted or interference-fit with the housing. A bolted stator creates motor whine and vibration excited by the motor torque ripple at certain torsional resonance frequencies. A stator with interference fit configuration stiffens the motor housing and pushes resonances to a higher frequency range, where masking noise levels are higher at faster vehicle speeds. However, this comes with additional cost and manufacturing process and may impact motor efficiency due to high stress on stators. In this paper, a thin sheet metal NVH ring is developed as a tunable stiffness device between the stator and the motor housing. It is pre-compressed and provides additional torsional rigidity to mitigate torsional excitations.
X