Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Numerical Investigation of Injection and Mixture Formation in Hydrogen Combustion Engines by Means of Different 3D-CFD Simulation Approaches

2024-07-02
2024-01-3007
For the purpose of achieving carbon-neutrality in the mobility sector by 2050, hydrogen can play a crucial role as an alternative energy carrier, not only for direct usage in fuel cell-powered vehicles, but also for fueling internal combustion engines. This paper focuses on the numerical investigation of high-pressure hydrogen injection and the mixture formation inside a high-tumble engine with a conventional liquid fuel injector for passenger cars. Since the traditional 3D-CFD approach of simulating the inner flow of an injector requires a very high spatial and temporal resolution, the enormous computational effort, especially for full engine simulations, is a big challenge for an effective virtual development of modern engines. An alternative and more pragmatic lagrangian 3D-CFD approach offers opportunities for a significant reduction in computational effort without sacrificing reliability.
Technical Paper

Traceability E-Fuels 2035

2024-07-02
2024-01-3022
EU legislation provides for only local CO2 emission-free vehicles to be allowed in individual passenger transport by 2035. In addition, the directive provides for fuels from renewable sources, i.e. defossilised fuels. This development leads to three possible energy sources or forms of energy for use in individual transport. The first possibility is charging with electricity generated from renewable sources, the second possibility is hydrogen generated from renewable sources or blue production path. The third possibility is the use of renewable fuels, also called e-fuels. These fuels are produced from atmospheric CO2 and renewable hydrogen. Possible processes for this are, for example, methanol or Fischer-Tropsch synthesis. The production of these fuels is very energy-intensive and large amounts of renewable electricity are needed.
Technical Paper

Development of a Soft-Actor Critic Reinforcement Learning Algorithm for the Energy Management of a Hybrid Electric Vehicle

2024-06-12
2024-37-0011
In recent years, the urgent need to fully exploit the fuel economy potential of the Electrified Vehicles (xEVs) through the optimal design of their Energy Management System (EMS) have led to an increasing interest in Machine Learning (ML) techniques. Among them, Reinforcement Learning (RL) seems to be one of the most promising approaches thanks to its peculiar structure, in which an agent is able to learn the optimal control strategy through the feedback received by a direct interaction with the environment. Therefore, in this study, a new Soft Actor-Critic agent (SAC), which exploits a stochastic policy, was implemented on a digital twin of a state-of-the-art diesel Plug-in Hybrid Electric Vehicle (PHEV) available on the European market. The SAC agent was trained to enhance the fuel economy of the PHEV while guaranteeing its battery charge sustainability.
Technical Paper

Performance Evaluation of an Eco-Driving Controller for Fuel Cell Electric Trucks in Real-World Driving Conditions

2024-04-09
2024-01-2183
Range anxiety in current battery electric vehicles is a challenging problem, especially for commercial vehicles with heavy payloads. Therefore, the development of electrified propulsion systems with multiple power sources, such as fuel cells, is an active area of research. Optimal speed planning and energy management, referred to as eco-driving, can substantially reduce the energy consumption of commercial vehicles, regardless of the powertrain architecture. Eco-driving controllers can leverage look-ahead route information such as road grade, speed limits, and signalized intersections to perform velocity profile smoothing, resulting in reduced energy consumption. This study presents a comprehensive analysis of the performance of an eco-driving controller for fuel cell electric trucks in a real-world scenario, considering a route from a distribution center to the associated supermarket.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

Post-Oxidation Phenomena as a Thermal Management Strategy for Automotive After-Treatment Systems: Assessment by Means of 3D-CFD Virtual Development

2024-04-09
2024-01-2629
The target of the upcoming automotive emission regulations is to promote a fast transition to near-zero emission vehicles. As such, the range of ambient and operating conditions tested in the homologation cycles is broadening. In this context, the proposed work aims to thoroughly investigate the potential of post-oxidation phenomena in reducing the light-off time of a conventional three-way catalyst. The study is carried out on a turbocharged four-cylinder gasoline engine by means of experimental and numerical activities. Post oxidation is achieved through the oxidation of unburned fuel in the exhaust line, exploiting a rich combustion and a secondary air injection dedicated strategy. The CFD methodology consists of two different approaches: the former relies on a full-engine mesh, the latter on a detailed analysis of the chemical reactions occurring in the exhaust line.
Technical Paper

3DOF Vehicle Dynamics Model for Fuel Consumption Estimation

2024-04-09
2024-01-2757
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track.
Technical Paper

Improving Computational Efficiency for Energy Management Systems in Plug-in Hybrid Electric Vehicles Using Dynamic Programming based Controllers

2023-08-28
2023-24-0140
Reducing computational time has become a critical issue in recent years, particularly in the transportation field, where the complexity of scenarios demands lightweight controllers to run large simulations and gather results to study different behaviors. This study proposes two novel formulations of the Optimal Control Problem (OCP) for the Energy Management System of a Plug-in Hybrid Electric Vehicle (PHEV) and compares their performance with a benchmark found in the literature. Dynamic Programming was chosen as the optimization algorithm to solve the OCP in a Matlab environment, using the DynaProg toolbox. The objective is to address the optimality of the fuel economy solution and computational time. In order to improve the computational efficiency of the algorithm, an existing formulation from the literature was modified, which originally utilized three control inputs.
Technical Paper

Battery Electric Vehicle Control Strategy for String Stability Based on Deep Reinforcement Learning in V2V Driving

2023-08-28
2023-24-0173
This works presents a Reinforcement Learning (RL) agent to implement a Cooperative Adaptive Cruise Control (CACC) system that simultaneously enhances energy efficiency and comfort, while also ensuring string stability. CACC systems are a new generation of ACC which systems rely on the communication of the so-called ego-vehicle with other vehicles and infrastructure using V2V and/or V2X connectivity. This enables the availability of robust information about the environment thanks to the exchange of information, rather than their estimation or enabling some redundancy of data. CACC systems have the potential to overcome one typical issue that arises with regular ACC, that is the lack of string stability. String stability is the ability of the ACC of a vehicle to avoid unnecessary fluctuations in speed that can cause traffic jams, dampening these oscillations along the vehicle string rather than amplifying them.
Technical Paper

A Quasi-Dimensional Two-System Burn Rate Model for Pre-Chamber-Initiated SACI Combustion

2023-08-28
2023-24-0002
State-of-the-art spark-ignition engines mainly rely on the quasi-hemispherical flame propagation combustion method. Despite significant development efforts to obtain high energy conversion efficiencies while avoiding knock phenomena, achieved indicated efficiencies remain around 35 - 40 %. Further optimizations are enabled by significant excess air dilution or increased combustion speed. However, flammability limits and decreasing flame speeds with increasing air dilution prevent substantial improvements. Pre-Chamber (PC) initiated jet ignition combustion systems improve flame stability and shift flammability limits towards higher dilution levels due to increased turbulence and a larger flame area in the early Main-Chamber (MC) combustion stages. Simultaneously, the much-increased combustion speed reduces knock tendency, allowing the implementation of an innovative combustion method: PC-initiated jet ignition coupled with Spark-Assisted Compression Ignition (SACI).
Technical Paper

Development of a Digital Twin to Support the Calibration of a Highly Efficient Spark Ignition Engine

2023-06-26
2023-01-1215
The role of numerical simulations in the development of innovative and sustainable powertrains is constantly growing thanks to their capabilities to significantly reduce the calibration efforts and to point out potential synergies among different technologies. In such a framework, this paper describes the development of a fully physical 1D-CFD engine model to support the calibration of the highly efficient spark ignition engine of the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) EU H2020 project. The availability of a reliable simulation platform is essential to effectively exploit the combination of the several features introduced to achieve the project target of 47% peak gross indicated efficiency, such as SwumbleTM in-cylinder charge motion, Miller cycle combined with high Compression Ratio (CR), lean mixture exploiting cooled low pressure Exhaust Gas Recirculation (EGR) and electrified turbocharging.
Technical Paper

Comprehensive Design Methodology of a Vehicle Monocoque: From Vehicle Dynamics to Manufacturing

2023-04-11
2023-01-0600
Climate change has become a real problem in our world. Society is trying to contain it as much as possible, promoting more sustainable behaviors and limiting pollution. For the automotive industry, this leads to progressive electrification and reduction of tailpipe emissions and fuel consumption for conventional vehicles. In this framework, this paper presents the design of a vehicle to compete in the Urban Concept category of Shell Eco Marathon, a competition among universities that has the goal to release a vehicle with the lowest possible fuel consumption. This work describes the monocoque design phases of the vehicle JUNO. The complete design approach is described, through the analysis of the decisional workflow adopted to integrate every technical solution from the aerodynamic constraints to the structural ones passing from the vehicle dynamic requirements.
Technical Paper

MPC-Based Cooperative Longitudinal Control for Vehicle Strings in a Realistic Driving Environment

2023-04-11
2023-01-0689
This paper deals with the energy efficiency of cooperative cruise control technologies when considering vehicle strings in a realistic driving environment. In particular, we design a cooperative longitudinal controller using a state-of-the-art model predictive control (MPC) implementation. Rather than testing our controller on a limited set of short maneuvers, we thoroughly assess its performance on a number of regulatory drive cycles and on a set of driving missions of similar length that were constructed based on real driving data. This allows us to focus our assessment on the energetic aspects in addition to testing the controller’s robustness. The analyzed controller, based on linear MPC, uses vehicle sensor data and information transmitted by the vehicle driving the string to adjust the longitudinal trajectory of the host vehicle to maintain a reduced inter-vehicular distance while simultaneously optimizing energy efficiency.
Technical Paper

Optimal Torque-Vectoring Control Strategy for Energy Efficiency and Vehicle Dynamic Improvement of Battery Electric Vehicles with Multiple Motors

2023-04-11
2023-01-0563
Electric vehicles comprising multiple motors allow the individual wheel torque allocation, i.e. torque-vectoring. Powertrain configurations with multiple motors provide additional degree of freedom to improve system level efficiencies while ensuring handling performances and active safety. However, most of the works available on this topic do not simultaneously optimize both vehicle dynamic performance and energy efficiency while considering the real-time implementability of the controller. In this work, a new and systematic approach in designing, modeling, and simulating the main layers of a torque-vectoring control framework is introduced. The high level control combines the actions of an adaptive Linear Quadratic Regulator (A-LQR) and of a feedforward controller, to shape the steady-state and transient vehicle response by generating the reference yaw moment. A novel energy efficient torque allocation method is proposed as a low level controller.
Technical Paper

CFD Analysis of Fuel Cell Humidification System for Automotive Application

2023-04-11
2023-01-0493
Fuel cells are considered one of the promising technologies as possible replacement of Internal Combustion Engine (ICE) for the transportation sector due to their high efficiency, ultra-low (or zero) emissions and for the higher drive range. The Membrane Electrode Assembly (MEA) is what mainly influences the Fuel Cell FC performance, durability, and cost. In PEMFC the proton conductivity of the membrane is a function of the humidification level of the FC membrane, hence the importance of keeping the membrane properly humidified to achieve the best possible fuel cell performance. To have the optimal water content inside the fuel cell’s membrane several strategies could be adopted, dealing with the use of external device (such as membrane humidifier) or to adopt an optimal set of parameters (gas flow rate and temperature for example) to use the water produced at fuel cell cathode as humidity source. The aim of this paper is to study the behavior of a FC vehicle humidification system.
Technical Paper

A Synergic Use of Innovative Technologies for the Next Generation of High Efficiency Internal Combustion Engines for PHEVs: The PHOENICE Project

2023-04-11
2023-01-0224
Despite the legislation targets set by several governments of a full electrification of new light-duty vehicle fleets by 2035, the development of innovative, environmental-friendly Internal Combustion Engines (ICEs) is still crucial to be on track toward the complete decarbonization of on road-mobility of the future. In such a framework, the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) project aims at developing a C SUV-class plug-in hybrid (P0/P4) vehicle demonstrator capable to achieve a -10% fuel consumption reduction with respect to current EU6 vehicle while complying with upcoming EU7 pollutant emissions limits. Such ambitious targets will require the optimization of the whole engine system, exploiting the possible synergies among the combustion, the aftertreatment and the exhaust waste heat recovery systems.
Technical Paper

A Plug-In Hybrid Electric Vehicle Concept with Fuel Cell Range Extender for Urban Delivery Transport – Vehicle Application

2023-04-11
2023-01-0491
The electrification of vehicle fleets for urban delivery transport is becoming increasingly important due to ever stricter legal requirements and the high public pressure on companies. In this paper, a converted 3.5 t light-duty vehicle with a maximum gross weight of 7.5 t is presented. The vehicle has a serial hybrid electric powertrain with a maximum electric traction power of 150 kW and a 60 kW fuel cell range extender, and uses a 46 kWh battery with 400 V mean voltage level, resulting in a full electric range of 120 km. The electric drive is realized with an induction motor and a lithium-manganese-iron-phosphate (LMFP)-battery as well as a 2-speed gearbox. The fuel cell system has a fuel tank with 100 l volume and 700 bar pressure level, resulting in a total mass of around 4.2 kg of hydrogen. This enables an overall vehicle range of 400 km.
Journal Article

A Quasi-Dimensional Burn Rate Model for Pre-Chamber-Initiated Jet Ignition Combustion

2023-04-11
2023-01-0184
Prospective combustion engine applications require the highest possible energy conversion efficiencies for environmental and economic sustainability. For conventional Spark-Ignition (SI) engines, the quasi-hemispherical flame propagation combustion method can only be significantly optimized in combination with high excess air dilution or increased combustion speed. However, with increasing excess air dilution, this is difficult due to decreasing flame speeds and flammability limits. Pre-Chamber (PC) initiated jet ignition combustion systems significantly shift the flammability and flame stability limits towards higher dilution areas due to high levels of introduced turbulence and a significantly increased flame area in early combustion stages, leading to considerably increased combustion speeds and high efficiencies. By now, vehicle implementations of PC-initiated combustion systems remain niche applications, especially in combination with lean mixtures.
Technical Paper

Efficient Post-Processing Method for Identification of Local Hotspots in 3D CFD Simulations

2022-06-14
2022-37-0005
Knocking is one of today’s main limitations in the ongoing efforts to increase efficiency and reduce emissions of spark-ignition engines. Especially for synthetic fuels or any alternative fuel type in general with a much steeper increase of the knock frequency at the KLSA, such as hydrogen, precise knock prediction is crucial to exploit their full potential. This paper therefore proposes a post-processing tool enabling further investigations to continuously gain better understanding of the knocking phenomenon. In this context, evaluation of local auto-ignitions preceding knock is crucial to improve knowledge about the stochastic occurrence of knock but also identify critical engine design to further optimize the geometry. In contrast to 0D simulations, 3D CFD simulations provide the possibility to investigate local parameters in the cylinder during the combustion.
X