Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Simulator Development for Vehicle Localization Using Low Earth Orbit Satellites

2024-04-09
2024-01-2846
This paper investigates the utilization of Low Earth Orbit (LEO) satellites for vehicle localization and conducts a comparative analysis with traditional Global Navigation Satellite Systems (GNSS)-based methods. With the rise of LEO satellite constellations, such as Starlink, LEO-based vehicle localization may offer solutions to GNSS-related challenges. With a large number of satellites and short communication distance, the LEO-based method has great potential to improve accuracy, reduce warm-up time, and provide a robust localization solution for vehicle applications. In this paper, a dedicated LEO satellite simulator is presented, adaptable to various LEO constellations, making it relevant for evolving technologies beyond older LEO systems like Orbcomm or Iridium. The simulator includes satellite trajectory generation, observable satellite identification, and vehicle localization.
Technical Paper

Developing an Automated Vehicle Research Platform by Integrating Autoware with the DataSpeed Drive-By-Wire System

2024-04-09
2024-01-1981
Over the past decade, significant progress has been made in developing algorithms and improving hardware for automated driving. However, conducting research and deploying advanced algorithms on automated vehicles for testing and validation remains costly, especially for academia. This paper presents the efforts of our research team to integrate the newest version of the open-source Autoware software with the commercially available DataSpeed Drive-by-Wire (DBW) system, resulting in the creation of a versatile and robust automated vehicle research platform. Autoware, an open-source software stack based on the 2nd generation Robot Operating System (ROS2), has gained prominence in the automated vehicle research community for its comprehensive suite of perception, planning, and control modules. The DataSpeed DBW system directly communicates with the vehicle's CAN bus and provides precise vehicle control capabilities.
Technical Paper

Validation and Analysis of Driving Safety Assessment Metrics in Real-world Car-Following Scenarios with Aerial Videos

2024-04-09
2024-01-2020
Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles.
Technical Paper

Efficient Design of Shell-and-Tube Heat Exchangers Using CAD Automation and Fluid flow Analysis in a Multi-Objective Bayesian Optimization Framework

2024-04-09
2024-01-2456
Shell-and-tube heat exchangers, commonly referred to as radiators, are the most prevalent type of heat exchanger within the automotive industry. A pivotal goal for automotive designers is to increase their thermal effectiveness while mitigating pressure drop effects and minimizing the associated costs of design and operation. Their design is a lengthy and intricate process involving the manual creation and refinement of computer-aided design (CAD) models coupled with iterative multi-physics simulations. Consequently, there is a pressing demand for an integrated tool that can automate these discrete steps, yielding a significant enhancement in overall design efficiency. This work aims to introduce an innovative automation tool to streamline the design process, spanning from CAD model generation to identifying optimal design configurations. The proposed methodology is applied explicitly to the context of shell-and-tube heat exchangers, showcasing the tool's efficacy.
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

Evaluating Safety Metrics for Vulnerable Road Users at Urban Traffic Intersections Using High-Density Infrastructure LiDAR System

2024-04-09
2024-01-2641
Ensuring the safety of vulnerable road users (VRUs) such as pedestrians, users of micro-mobility vehicles, and cyclists is imperative for the commercialization of automated vehicles (AVs) in urban traffic scenarios. City traffic intersections are of particular concern due to the precarious situations VRUs often encounter when navigating these locations, primarily because of the unpredictable nature of urban traffic. Earlier work from the Institute of Automated Vehicles (IAM) has developed and evaluated Driving Assessment (DA) metrics for analyzing car following scenarios. In this work, we extend those evaluations to an urban traffic intersection testbed located in downtown Tempe, Arizona. A multimodal infrastructure sensor setup, comprising a high-density, 128-channel LiDAR and a 720p RGB camera, was employed to collect data during the dusk period, with the objective of capturing data during the transition from daylight to night.
Technical Paper

Efficient Design of Automotive Structural Components via De-Homogenization

2023-04-11
2023-01-0026
In the past decades, automotive structure design has sought to minimize its mass while maintaining or improving structural performance. As such, topology optimization (TO) has become an increasingly popular tool during the conceptual design stage. While the designs produced by TO methods provide significant performance-to-mass ratio improvements, they require considerable computational resources when solving large-scale problems. An alternative for large-scale problems is to decompose the design domain into multiple scales that are coupled with homogenization. The problem can then be solved with hierarchical multiscale topology optimization (MSTO). The resulting optimal, homogenized macroscales are de-homogenized to obtain a high-fidelity, physically-realizable design. Even so MSTO methods are still computationally expensive due to the combined costs of solving nested optimization problems and performing de-homogenization.
Technical Paper

Comparison of Infrastructure- and Onboard Vehicle-Based Sensor Systems in Measuring Operational Safety Assessment (OSA) Metrics

2023-04-11
2023-01-0858
The operational safety of Automated Driving System (ADS)-Operated Vehicles (AVs) are a rising concern with the deployment of AVs as prototypes being tested and also in commercial deployment. The robustness of safety evaluation systems is essential in determining the operational safety of AVs as they interact with human-driven vehicles. Extending upon earlier works of the Institute of Automated Mobility (IAM) that have explored the Operational Safety Assessment (OSA) metrics and infrastructure-based safety monitoring systems, in this work, we compare the performance of an infrastructure-based Light Detection And Ranging (LIDAR) system to an onboard vehicle-based LIDAR system in testing at the Maricopa County Department of Transportation SMARTDrive testbed in Anthem, Arizona. The sensor modalities are located in infrastructure and onboard the test vehicles, including LIDAR, cameras, a real-time differential GPS, and a drone with a camera.
Technical Paper

Evaluating Automated Vehicle Scenario Navigation Using the Operational Safety Assessment (OSA) Methodology

2023-04-11
2023-01-0797
The operational safety of Automated Driving System-equipped vehicles (AVs) is a critical issue with AVs being deployed on public roads. Methodologies for evaluating the operational safety are therefore necessary to maintain public safety. One possible approach is a safety case established by the AV developer that uses evidence to support a structured argument that the AV exhibits a given level of operational safety. One of the key components of a safety case for AVs is a set of testing results showing behavioral competency in a variety of scenarios within the AV’s operational design domain (ODD). The Institute of Automated Mobility (IAM) has previously published operational safety assessment (OSA) metrics along with a means to evaluate the severity of violations of the safety envelope-type OSA metrics for navigation of individual scenarios in the proposed OSA Methodology.
Journal Article

Thermal Reduced Order Modeling for System Analysis of EV Battery

2023-04-11
2023-01-0931
The safety, performance, and operational life of power dense Lithium-ion batteries used in Hybrid and Electric Vehicles are dependent on the operating temperature. Modeling and simulation are essential tools used to accelerate the design process of optimal thermal management systems. However, high-fidelity 3D computational fluid dynamics (CFD) simulation of such systems is often difficult and computationally expensive. In this paper, we demonstrate a multi-part coupled system model for simulating the heating/cooling system of the traction battery at a module level. We have reduced computational time by employing reduced-order modeling (ROM) framework on separate 3D CFD models of the battery module and the cooling plate. The order of the thermal ROM has also been varied to study the trade-off between accuracy, fidelity, and complexity. The ROMs are bidirectionally coupled to an empirical battery model built from in-house test data.
Technical Paper

Multi-Objective Bayesian Optimization Supported by Deep Gaussian Processes

2023-04-11
2023-01-0031
A common scenario in engineering design is the evaluation of expensive black-box functions: simulation codes or physical experiments that require long evaluation times and/or significant resources, which results in lengthy and costly design cycles. In the last years, Bayesian optimization has emerged as an efficient alternative to solve expensive black-box function design problems. Bayesian optimization has two main components: a probabilistic surrogate model of the black-box function and an acquisition functions that drives the design process. Successful Bayesian optimization strategies are characterized by accurate surrogate models and well-balanced acquisition functions. The Gaussian process (GP) regression model is arguably the most popular surrogate model in Bayesian optimization due to its flexibility and mathematical tractability. GP regression models are defined by two elements: the mean and covariance functions.
Technical Paper

Evaluation of Operational Safety Assessment (OSA) Metrics for Automated Vehicles Using Real-World Data

2022-03-29
2022-01-0062
Assurance of the operational safety of automated vehicles (AVs) is crucial to enable commercialization and deployment on public roads. The operational safety must be quantified without ambiguity using well-defined metrics. Several efforts are in place to establish an appropriate set of metrics that can quantify the operational safety of AVs in a technology-neutral way, including the Operational Safety Assessment (OSA) metrics proposed by the Institute of Automated Mobility (IAM). The focus of this work is to compute real-world measurements of the relevant safety envelope OSA metrics in car-following scenarios. This allows for an analysis of the impact of different parameters and thresholds and for an evaluation of the individual usefulness of the safety envelope OSA metrics. The current work complements prior IAM work involving evaluating the safety envelope OSA metrics in car-following scenarios in simulation.
Technical Paper

Infrastructure-Based LiDAR Monitoring for Assessing Automated Driving Safety

2022-03-29
2022-01-0081
The successful deployment of automated vehicles (AVs) has recently coincided with the use of off-board sensors for assessments of operational safety. Many intersections and roadways have monocular cameras used primarily for traffic monitoring; however, monocular cameras may not be sufficient to allow for useful AV operational safety assessments to be made in all operational design domains (ODDs) such as low ambient light and inclement weather conditions. Additional sensor modalities such as Light Detecting and Ranging (LiDAR) sensors allow for a wider range of scenarios to be accommodated and may also provide improved measurements of the Operational Safety Assessment (OSA) metrics previously introduced by the Institute of Automated Mobility (IAM).
Technical Paper

Sensitivity of Automated Vehicle Operational Safety Assessment (OSA) Metrics to Measurement and Parameter Uncertainty

2022-03-29
2022-01-0815
As the deployment of automated vehicles (AVs) on public roadways expands, there is growing interest in establishing metrics that can be used to evaluate vehicle operational safety. The set of Operational Safety Assessment (OSA) metrics, that include several safety envelope-type metrics, previously proposed by the Institute of Automated Mobility (IAM) are a step towards this goal. The safety envelope OSA metrics can be computed using kinematics derived from video data captured by infrastructure-based cameras and thus do not require on-board sensor data or vehicle-to-infrastructure (V2I) connectivity, though either of the latter data sources could enhance kinematic data accuracy. However, the calculation of some metrics includes certain vehicle-specific parameters that must be assumed or estimated if they are not known a priori or communicated directly by the vehicle.
Technical Paper

Multi-Objective Bayesian Optimization of Lithium-Ion Battery Cells

2022-03-29
2022-01-0703
In the last years, lithium-ion batteries (LIBs) have become the most important energy storage system for consumer electronics, electric vehicles, and smart grids. A LIB is composed of several unit cells. Therefore, one of the most important factors that determine the performance of a LIB are the characteristics of the unit cell. The design of LIB cells is a challenging problem since it involves the evaluation of expensive black-box functions. These functions lack a closed-form expression and require long-running time simulations or expensive physical experiments for their evaluation. Recently, Bayesian optimization has emerged as a powerful gradient-free optimization methodology to solve optimization problems that involve the evaluation of expensive black-box functions. Bayesian optimization has two main components: a probabilistic surrogate model of the black-box function and an acquisition function that guides the optimization.
Journal Article

Detection of Pinion Grinding Defects in a Nested Planetary Gear System using a Narrowband Demodulation Approach

2021-08-31
2021-01-1100
Nested planetary gear trains, which consist of two integrated co-axial single-stage planetary gearsets, have recently been widely implemented in automobile transmissions and various other applications. In the current study, a non-destructive vibrational and acoustical monitoring technique is developed to detect a common type of gear grinding defect for a complex nested gear train structure. A nested gear train which has an unground pinion with unpolished teeth profile is used to exemplify the developed methodology. An experimental test stand with an open and vertical mounting configuration has been designed to acquire both vibrational and acoustical data. The measured data are investigated using several signal processing techniques to identify unground pinions in the gear system. A general frequency spectrum analysis is performed initially, which is then followed by a peak finding algorithm to identify the peaks in the spectrum.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

Friction Force Reduction for Electrical Terminals using Solution-Processed Reduced Graphene Oxide Coating

2021-04-06
2021-01-0348
Electrical connectors and terminals are widely used in the automotive industry. It is desirable to mate the electrical connections using materials or coatings with low friction force to improve the ergonomics of the assembly process while maintaining good electrical conduction over the lifetime of the vehicle. We have previously shown that plasma-enhanced chemical vapor deposition (PECVD) of graphene on gold (Au) and silver (Ag) terminals can significantly reduce the insertion force (friction force during the terminal insertion process). However, the cost of this deposition method is rather high, and its high temperature process (> 400 oC) makes it impractical for materials with low melting temperatures. For example, tin (Sn) coating with a melting temperature of 232 oC is commonly used in electrical connectors, which cannot sustain the high temperature process. In this study, reduced graphene oxide was prepared using a low-cost solution process and applied onto metallic terminals.
Technical Paper

Bayesian Optimization of Active Materials for Lithium-Ion Batteries

2021-04-06
2021-01-0765
The design of better active materials for lithium-ion batteries (LIBs) is crucial to satisfy the increasing demand of high performance batteries for portable electronics and electric vehicles. Currently, the development of new active materials is driven by physical experimentation and the designer’s intuition and expertise. During the development process, the designer interprets the experimental data to decide the next composition of the active material to be tested. After several trial-and-error iterations of data analysis and testing, promising active materials are discovered but after long development times (months or even years) and the evaluation of a large number of experiments. Bayesian global optimization (BGO) is an appealing alternative for the design of active materials for LIBs. BGO is a gradient-free optimization methodology to solve design problems that involve expensive black-box functions. An example of a black-box function is the prediction of the cycle life of LIBs.
Journal Article

High-Speed 3D Optical Sensing and Information Processing for Automotive Industry

2021-04-06
2021-01-0303
This paper explains the basic principles behind two platform technologies that my research team has developed in the field of optical metrology and optical information processing: 1) high-speed 3D optical sensing; and 2) real-time 3D video compression and streaming. This paper will discuss how such platform technologies could benefit the automotive industry including in-situ quality control for additive manufacturing and autonomous vehicle systems. We will also discuss some of other applications that we have been working on such as crime scene capture in forensics.
X