Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Active Collision Avoidance System for E-Scooters in Pedestrian Environment

2024-04-09
2024-01-2555
In the dense fabric of urban areas, electric scooters have rapidly become a preferred mode of transportation. As they cater to modern mobility demands, they present significant safety challenges, especially when interacting with pedestrians. In general, e-scooters are suggested to be ridden in bike lanes/sidewalks or share the road with cars at the maximum speed of about 15-20 mph, which is more flexible and much faster than pedestrians and bicyclists. Accurate prediction of pedestrian movement, coupled with assistant motion control of scooters, is essential in minimizing collision risks and seamlessly integrating scooters in areas dense with pedestrians. Addressing these safety concerns, our research introduces a novel e-Scooter collision avoidance system (eCAS) with a method for predicting pedestrian trajectories, employing an advanced Long short-term memory (LSTM) network integrated with a state refinement module.
Technical Paper

Introduction of the eGTU – An Electric Version of the Generic Truck Utility Aerodynamic Research Model

2024-04-09
2024-01-2273
Common aerodynamic research models have been used in aerodynamic research throughout the years to assist with the development and correlation of new testing and numerical techniques, in addition to being excellent tools for gathering fundamental knowledge about the physics around the vehicle. The generic truck utility (GTU) was introduced by Woodiga et al. [1] in 2020 following successful adoption of the DrivAer (Heft et al. [2]) by the automotive aerodynamics community with the goal to capture the unique flow fields created by pickups and large SUVs. To date, several studies have been presented on the GTU (Howard et. al 2021 [3], Gleason, Eugen 2022 [4]), however, with the increasing prevalence of electric vehicles (EVs), the authors have created additional GTU configurations to emulate an EV-style underbody for the GTU.
Technical Paper

CAATS - Automotive Wind Tunnel Test Techniques

2024-04-09
2024-01-2543
This paper contributes to the Committee on Commonized Aerodynamics Automotive Testing Standards (CAATS) initiative, established by the late Gary Elfstrom. It is collaboratively compiled by automotive wind tunnel users and operators within the Subsonic Aerodynamic Testing Association (SATA). Its specific focus lies in automotive wind tunnel test techniques, encompassing both those relevant to passenger car and race car development. It is part of the comprehensive CAATS series, which addresses not only test techniques but also wind tunnel calibration, uncertainty analysis, and wind tunnel correction methods. The core objective of this paper is to furnish comprehensive guidelines for wind tunnel testing and associated techniques. It begins by elucidating the initial wind tunnel setup and vehicle arrangement within it.
Technical Paper

Time-Domain Explicit Dynamic CAE Simulation for Brake Squeal

2023-05-08
2023-01-1061
Disc brake squeal is always a challenging multidisciplinary problem in vehicle noise, vibration, and harshness (NVH) that has been extensively researched. Theoretical analysis has been done to understand the mechanism of disc brake squeal due to small disturbances. Most studies have used linear modal approaches for the harmonic vibration of large models. However, time-domain approaches have been limited, as they are restricted to specific friction models and vibration patterns and are computationally expensive. This research aims to use a time-domain approach to improve the modeling of brake squeal, as it is a dynamic instability issue with a time-dependent friction force. The time-domain approach has been successfully demonstrated through examples and data.
Journal Article

Improvements to a Method to Simulate Non-Stationary Wind Noise in Vehicles

2023-05-08
2023-01-1122
As the vehicle and wind speeds and directions change, the unsteady flow creates non-stationary wind noise. To investigate people’s perceptions of non-stationary wind noise, a method to simulate the non-stationary wind noise is needed. Previously, a method was developed that used stationary recordings taken at several speeds and directions to create a set of sound pressure level predictions in each one-third octave band that are a function of wind speed and direction. These functions are used to create time-varying filters based on provided wind profiles. A reference wind noise measurement is then filtered to produce the sounds. A drawback of this method is that many stationary wind condition measurements are needed to form accurate sound pressure level functions, which can be time consuming. A method requiring fewer measurements was investigated.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Performance and Network Architecture Options of Consolidated Object Data Service for Multi-RAT Vehicular Communication

2023-04-11
2023-01-0857
With the proliferation of ADAS and autonomous systems, the quality and quantity of the data to be used by vehicles has become crucial. In-vehicle sensors are evolving, but their usability is limited to their field of view and detection distance. V2X communication systems solve these issues by creating a cooperative perception domain amongst road users and the infrastructure by communicating accurate, real-time information. In this paper, we propose a novel Consolidated Object Data Service (CODS) for multi-Radio Access Technology (RAT) V2X communication. This service collects information using BSM packets from the vehicular network and perception information from infrastructure-based sensors. The service then fuses the collected data, offering the communication participants with a consolidated, deduplicated, and accurate object database. Since fusing the objects is resource intensive, this service can save in-vehicle computation costs.
Technical Paper

Synergizing Artificial Intelligence with Product Recall Management Process

2023-04-11
2023-01-0867
There are a multitude of dynamics faced by any industry. There is also a consistent search and development of technological platforms and services to address these changes. This necessitates a shared work philosophy which involves multiple stakeholders. Verification and validation are integral part of any development irrespective of product, process, or services. Also, every industry has a regulatory compliance to adhere too. But the extent of complexity and the level of dependencies or interactions between modules as well as stakeholders involved, creates slippage at some or other level. Nowadays the industries are also driven by reuse for cost effectiveness. Though it marks the significant improvement in the capability to compete, compatibility is a key measure to a successful product or service launch and sustainability.
Journal Article

The Ford Rolling Road Wind Tunnel Facility

2023-04-11
2023-01-0654
The Ford Motor Company Rolling Road Wind Tunnel (RRWT) is a state-of-the-art aerodynamic wind tunnel test facility in Allen Park, Michigan. The RRWT has operated since January 2022 and is designed for passenger and motorsport vehicle development. The test facility includes an office area, three secure customer vehicle preparation bays, a garage area, a vehicle frontal area measurement system, and a full-scale ¾ open jet wind tunnel. The wind tunnel features an interchangeable single belt and 5-belt Moving Ground Plane (MGP) system with an integrated 6-component balance, a two-position nozzle, boundary layer removal systems, and two independent flow traverse systems. Each flow traverse has a large horizontal box beam and vertical Z-strut that can position the flow traverse accurately within the test volume.
Technical Paper

An Optimization Model for Die Sets Allocation to Minimize Supply Chain Cost

2022-07-08
2022-01-5057
In this paper, a novel mixed-integer programming model is developed to optimally assign the die sets to candidate plants to minimize the total costs. The total costs include freight shipping stamped parts to assembly plants, die set movement, outsourcing, and utilization. Therefore, the objective function is weighted multi-criteria and it takes into consideration some of the key constraints in the real-world condition including “must-move die sets”. An optimization tool has been developed that takes several inputs and feeds them as the input to the mathematical model and generates the optimal assignments with the directional costs as the output. The tool has been tested for several plants at Ford and has proved its robustness by saving millions of dollars. The developed tool can easily be applied to other manufacturing systems and original equipment manufacturers (OEMs).
Technical Paper

Robustness Testing of a Watermarking CAN Transceiver

2022-03-29
2022-01-0106
To help address the issue of message authentication on the Controller Area Network (CAN) bus, researchers at Virginia Tech and Ford Motor Company have developed a proof-of-concept time-evolving watermark-based authentication mechanism that offers robust, cryptographically controlled confirmation of a CAN message's authenticity. This watermark is injected as a common-mode signal on both CAN-HI and CAN-LO bus voltages and has been proven using a low-cost software-defined radio (SDR) testbed. This paper extends prior analysis on the design and proof-of-concept to consider robustness testing over the range of voltages, both steady state drifts and transients, as are commonly witnessed within a vehicle. Overall performance results, along with a dynamic watermark amplitude control, validate the concept as being a practical near-term approach at improving authentication confidence of messages on the CAN bus.
Technical Paper

Electric Power Assisted Steering System in Vehicle Level CAE Simulation

2022-03-29
2022-01-0779
The steering system is to provide the driver with the possibility of lateral vehicle guidance, i.e. to influence the lateral dynamics of the vehicle; moreover, it is crucial to promptly translate the steering input to have the vehicle in high-quality directional stability. An electrical power assisted steering (EPAS) system is the sophisticated variant to meet higher requirements for vehicle safety, ride comfort, and driver-assist. This research is to investigate if a CAE methodology could be innovated to better simulate the durability of a steering system under various working scenarios; figure out the critical features of the modeling; conduct a correct analysis procedure for validating the modeling and collecting data for evaluation. With step by step in modeling and analysis, a well-established example of CAE model of EPAS is enabled to highlight the novelty of steering vehicle level CAE methodology and therefore achieve the research goal.
Technical Paper

A Comparison of DES Methods for the DrivAer Generic Realistic Car Model on a Wall Resolved and a Wall Function Mesh

2022-03-29
2022-01-0900
The DrivAer realistic generic car model is now established as one of the benchmark geometries to assess the aerodynamic flow field characteristics associated with passenger vehicles. Since its introduction in 2012, the database of experimental studies has grown and provides excellent validation opportunities for analytical methods. This paper compares Computational Fluid Dynamics (CFD) simulations for integral forces, surface pressure distribution and velocity flow fields for the DrivAer model in the notchback configuration. Transient CFD data are obtained by employing hybrid Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation methods (Detached Eddy Simulation - DES) using the finite volume solvers Simcenter Star-CCM+ and the openFOAM based flow solver IconCFD. Computational results are calculated using Wall Resolved Meshes (WRM), where y+ < 1, and Wall Function Meshes (WFM), where 30 < y+ < 100.
Technical Paper

Developments of Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) Project

2022-03-29
2022-01-0341
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project that developed structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components were selected for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Journal Article

Unified Power-Based Analysis of Combustion Engine and Battery Electric Vehicle Energy Consumption

2022-03-29
2022-01-0532
The previously developed power-based fuel consumption theory for Internal Combustion Engine Vehicles (ICEV) is extended to Battery Electric Vehicles (BEV). The main difference between the BEV model structure and the ICEV is the bi-directional character of traction motors and batteries. A traction motor model was developed as a bi-linear function of positive and negative traction power. Another difference is that the accessories and cabin heating are powered directly from the battery, and not from the powertrain. The resulting unified model for ICEV and BEV energy consumption has linear terms proportional to positive and negative traction power, accessory power, and overhead, in varying proportions. Compared to the ICEV, the BEV powertrain has a high marginal efficiency and low overhead. As a result, BEV energy consumption data under a wide range of driving conditions are mainly proportional to net traction power, with only a small offset.
Technical Paper

Towards a Standardized Assessment of Automotive Aerodynamic CFD Prediction Capability - AutoCFD 2: Ford DrivAer Test Case Summary

2022-03-29
2022-01-0886
The 2nd Automotive CFD Prediction workshop (AutoCFD2) was organized to improve the state-of-the-art in automotive aerodynamic prediction. It is the mission of the workshop organizing committee to drive the development and validation of enhanced CFD methods by establishing publicly available standard test cases for which high quality on- and off-body wind tunnel test data is available. This paper reports on the AutoCFD2 workshop for the Ford DrivAer test case. Since its introduction, the DrivAer quickly became the quasi-standard for CFD method development and correlation. The Ford DrivAer has been chosen due to the proven, high-quality experimental data available, which includes integral aerodynamic forces, 209 surface pressures, 11 velocity profiles and 4 flow field planes. For the workshop, the notchback version of the DrivAer in a closed cooling, static floor test condition has been selected.
Technical Paper

U-Bolt Pre-Load and Torque Capacity Determination Using Non-Linear CAE

2022-03-29
2022-01-0773
This paper presents a method of using CAE to determine the pre-load and torque applied to a U-Bolt rear Spring Seat. In this paper it is review two U-bolt design and the stresses generated by the pre-load torque applied, based in this study a process to determine the minimal preload and the torque is discussed. By this process it is possible to determine the minimum Torque and the correct pre-load in the U-Bolt element and assuring the correct fastening of the components avoiding over stress in the Bar elements.
Journal Article

Rear-End Impacts - Part 1: Field and Test Data Analysis of Crash Characteristics

2022-03-29
2022-01-0859
Prior to developing or modifying the protocol of a performance evaluation test, it is important to identify field relevant conditions. The objective of this study was to assess the distribution of selected crash variables from rear crash field collisions involving modern vehicles. The number of exposed and serious-to-fatally injured non-ejected occupants was determined in 2008+ model year (MY) vehicles using the NASS-CDS and CISS databases. Selected crash variables were assessed for rear crashes, including severity (delta V), impact location, struck vehicle type, and striking objects. In addition, 15 EDRs were collected from 2017 to 2019 CISS cases involving 2008+ MY light vehicles with a rear delta V ranging from 32 to 48 km/h. Ten rear crash tests were also investigated to identify pulse characteristics in rear crashes. The tests included five vehicle-to-vehicle crash tests and five FMVSS 301R barrier tests matching the struck vehicle.
Journal Article

FE Simulation of Split in Fundamental Air-Cavity Mode of Loaded Tires: Comparison with Empirical Results

2021-08-31
2021-01-1064
Tire/road noise has become a significant issue in the automotive industry, especially for electric vehicles. Among the various tire/road noise sources, the air-cavity mode can amplify the forces transmitted from the tire to the suspension system causing noticeable cabin noise near 200 Hz. Furthermore, when the tire is deformed by loading, the fundamental air-cavity mode separates into two acoustic modes, a fore-aft mode and vertical mode due to the break in geometrical symmetry. This is important because the two components of the split mode can increase force levels at the hub by interacting with neighboring structural modes, thus resulting in increased interior noise levels. In this research, finite element simulations of five commercial tires at rated load were performed with a view to identifying the frequency split and its interaction with structural resonances. These results have been compared with previously obtained empirical results.
X