Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Reheating and Sterilization Technology for Food, Waste and Water: Design and Development Considerations for Package and Enclosure

2005-07-11
2005-01-2926
Long-duration space missions require high-quality, nutritious foods, which will need reheating to serving temperature, or sterilization on an evolved planetary base. The package is generally considered to pose a disposal problem after use. We are in the process of development of a dual-use package wherein the food may be rapidly reheated in situ using the technology of ohmic heating. We plan to make the container reusable, so that after food consumption, the package is reused to contain and sterilize waste. This approach will reduce Equivalent System Mass (ESM) by using a compact heating technology, and reducing mass requirements for waste storage. Preliminary tests of the package within a specially-designed ohmic heating enclosure show that ISS menu item could easily be heated using ohmic heating technology. Mathematical models for heat transfer were used to optimize the layout of electrodes to ensure uniform heating of the material within the package.
Technical Paper

Mathematical Modeling of Food Systems for Long-Term Space Missions

2002-07-15
2002-01-2290
The quantitative analysis of the food system for long-term space missions is a crucial factor for the comparison of different food plans and for the evaluation of the food system as part of the overall mission. Such analysis should include important factors such as nutrition, palatability, diet cycle length, and psychological issues related to food. This paper will give the details of a mathematical model that was developed during the first author's participation as a Summer Faculty Fellow at Johnson Space Center. The model includes nutrition, palatability, diet cycle length, and psychological issues as important components. The model is compatible with the Equivalent System Mass (ESM) metric previously developed as the Advance Life Support (ALS) Research and Technology Metric.
Technical Paper

Food System Trade Study for an Early Mars Mission

2001-07-09
2001-01-2364
In preparation for future planetary exploration, the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) is currently being built at the NASA Johnson Space Center. The BIO-Plex facility will allow for closed chamber Earth-based tests. Various prepackaged food systems are being considered for the first 120-day BIO-Plex test. These food systems will be based on the Shuttle Training Menu and the International Space Station (ISS) Assembly Complete food systems. This paper evaluates several prepackaged food system options for the surface portion of an early Mars mission, based on plans for the first BIO-Plex test. The five systems considered are listed in Table 1. The food system options are assessed using equivalent system mass (ESM), which evaluates each option based upon the mass, volume, power, cooling and crewtime requirements.
X