Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Experimental Study of Automotive Turbocharger Turbine Performance Maps Extrapolation

2016-04-05
2016-01-1034
Engine downsizing is potentially one of the most effective strategies being explored to improve fuel economy. A main problem of downsizing using a turbocharger is the small range of stable functioning of the turbocharger centrifugal compressor at high boost pressures, and hence the measurement of the performance maps of both compressor and turbine. Automotive manufacturers use mainly numerical simulations for internal combustion engines simulations, hence the need of an accurate extrapolation model to get a complete turbine performance map. These complete maps are then used for internal combustion engines calibration. Automotive manufacturers use commercial softwares to extrapolate the turbine narrow performance maps, both mass flow characteristics and the efficiency curve.
Journal Article

Development and Validation of a New Zero-Dimensional Semi-Physical NOx Emission Model for a D.I. Diesel Engine Using Simulated Combustion Process

2015-04-14
2015-01-1746
Reducing NOx tailpipe emissions is one of the major challenges when developing automotive Diesel engines which must simultaneously face stricter emission norms and reduce their fuel consumption/CO2 emission. In fact, the engine control system has to manage at the same time the multiple advanced combustion technologies such as high EGR rates, new injection strategies, complex after-treatment devices and sophisticated turbocharging systems implemented in recent diesel engines. In order to limit both the cost and duration of engine control system development, a virtual engine simulator has been developed in the last few years. The platform of this simulator is based on a 0D/1D approach, chosen for its low computational time. The existing simulation tools lead to satisfactory results concerning the combustion phase as well as the air supply system. In this context, the current paper describes the development of a new NOx emission model which is coupled with the combustion model.
Technical Paper

System Optimization for a 2-Stroke Diesel Engine with a Turbo Super Configuration Supporting Fuel Economy Improvement of Next Generation Engines

2014-11-11
2014-32-0011
The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831. Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on a 2 cylinder 2-stroke 0.73L diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT).
Journal Article

Control-Oriented Modeling of a LNT-SCR Diesel After-Treatment Architecture

2011-04-12
2011-01-1307
Lean NOx trap (LNT) and Selective Catalytic Reduction catalysts (SCR) are two leading candidates for diesel NOx after-treatment. Each technology exhibits good properties to reduce efficiently diesel NOx emissions in order to match the forthcoming EURO 6 standards. NOx reduction in LNT is made through a two-step process. In normal (lean) mode, diesel engine exhausts NOx is stored into the NOx trap; then when necessary the engine runs rich during limited time to treat the stored NOx. This operating mode has the benefit of using onboard fuel as NOx reducer. But NOx trap solution is restrained by limited active temperature windows. On the other hand, NH₃-SCR catalysts operate in a wider range of temperature and do not contain precious metals. However, NH₃-SCR systems traditionally use urea-water solution as reducing agent, requiring thus additional infrastructure to supply the vehicles with enough reducer. These pros and cons are quite restrictive in classical LNT or NH₃-SCR architecture.
Technical Paper

System Approach for NOx Reduction: Double LNT Diesel After-Treatment Architecture

2011-04-12
2011-01-1300
This paper presents an after-treatment architecture combining a close coupled NOx trap and an under floor NOx trap. Instead of simply increasing the volume of the catalyst, we propose to broaden the active temperature window by splitting the LNT along the exhaust line. In order to design this architecture, a complete 1D model of NOx trap has been developed. Validated with respect to experimental data, this model has been useful to define the two volumes of LNT, making significant savings on the test bench exploitation. However, one of the main difficulties to operate the proposed architecture is the NOx purge and sulfur poisoning management. In order to optimize the NOx and sulfur purge launches, we have developed a control strategy based on an embedded reduced LNT model. These strategies have been validated on different driving cycles, by the means of simulation and of vehicle tests using rapid prototyping tools.
Journal Article

Effects of Methane/Hydrogen Blends On Engine Operation: Experimental And Numerical Investigation of Different Combustion Modes

2010-10-25
2010-01-2165
The introduction of alternative fuels is crucial to limit greenhouse gases. CNG is regarded as one of the most promising clean fuels given its worldwide availability, its low price and its intrinsic properties (high knocking resistance, low carbon content...). One way to optimize dedicated natural gas engines is to improve the CNG slow burning velocity compared to gasoline fuel and allow lean burn combustion mode. Besides optimization of the combustion chamber design, hydrogen addition to CNG is a promising solution to boost the combustion thanks to its fast burning rate, its wide flammability limits and its low quenching gap. This paper presents an investigation of different methane/hydrogen blends between 0% and 40 vol. % hydrogen ratio for three different combustion modes: stoichiometric, lean-burn and stoichiometric with EGR.
Technical Paper

Quantifying Benefits of Dual Cam Phasers, Lean Mixture and EGR on the Operating Range and Fuel Economy of a PFI NVO CAI Engine

2010-04-12
2010-01-0844
Among the existing concepts that help to improve the efficiency of spark-ignition engines at part load, Controlled Auto-Ignition™ (CAI™) is an effective way to lower both fuel consumption and pollutant emissions. This combustion concept is based on the auto-ignition of an air-fuel-mixture highly diluted with hot burnt gases to achieve high indicated efficiency and low pollutant emissions through low temperature combustion. To minimize the costs of conversion of a standard spark-ignition engine into a CAI engine, the present study is restricted to a Port Fuel Injection engine with a cam-profile switching system and a cam phaser on both intake and exhaust sides. In a 4-stroke engine, a large amount of burnt gases can be trapped in the cylinder via early closure of the exhaust valves. This so-called Negative Valve Overlap (NVO) strategy has a key parameter to control the amount of trapped burnt gases and consequently the combustion: the exhaust valve-lift profile.
Technical Paper

Energy Management of a High Efficiency Hybrid Electric Automatic Transmission

2010-04-12
2010-01-1311
The energy management of a hybrid vehicle defines the vehicle power flow that minimizes fuel consumption and exhaust emissions. In a combined hybrid the complex architecture requires a multi-input control from the energy management. A classic optimal control obtained with dynamic programming shows that thanks to the high efficiency hybrid electric variable transmission, energy losses come mainly from the internal combustion engine. This paper therefore proposes a sub-optimal control based on the maximization of the engine efficiency that avoids multi-input control. This strategy achieves two aims: enhanced performances in terms of fuel economy and a reduction of computational time.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Non-Thermal Plasma Assisted Catalytic NOx Remediation from a Lean Model Exhaust

2001-09-24
2001-01-3508
No efficient catalyst presently exists for deNOx in lean burn conditions. Furthermore, actual catalysts generally deactivate during reaction. A cylindrical DBD non-thermal plasma reactor was coupled with a stable three-function catalyst in order to verify the nature of the effect of the plasma on the catalytic process. A mixture of NO/O2/C3H6 in N2 was used as a lean model exhaust. The plasma was found to perform two of the three functions: NO oxidation to NO2 and propene activation through the partial oxidation of the hydrocarbon to aldehyde or alcohol. A complete catalyst containing the first two previous functions and the associative chemisorption of NO (third function) was used, as well as a simplified catalyst containing only the third function. Results suggest an advantageous plasma-catalyst coupling effect on NOx remediation in accordance with the proposed catalytic model.
Technical Paper

Influence of Both Catalyst Geometry and Fuel Sulfur Content on NOX Adsorber Poisoning

2001-05-07
2001-01-1934
NOx adsorbers are very sensitive to sulfur poisoning and future fuel standards are unlikely to be sufficient to prevent the system from requiring periodic desulfation procedures. The purpose of this paper is to present the effects of low fuel sulfur content such as 50 ppm and 10 ppm on the NOx adsorber efficiency for a diesel application. Through this study, the influence of the substrate cell geometry has also been assessed. The use of a 10 ppm sulfur fuel is not enough to maintain, at a high level, the NOx adsorber performance during a 40,000 km aging test. The desulfation criterion (efficiency loss of 30%) is reached after the first 16,000 km. However, the desulfation operation is not enough to recover the initial catalyst performance and the poisoning velocity increases as the catalyst ages. The hexagonal cell substrate catalyst is less sensitive to sulfur poisoning than a square cell substrate catalyst so that its desulfation frequency is much lower.
Technical Paper

Fuel Additive Performance Evaluation for Volume Production Application of a Diesel Particulate Filter

2001-03-05
2001-01-1286
Diesel particulate filter (DPF) technology is becoming increasingly established as a practical method for control of particulate emissions from diesel engines. In the year 2000, production vehicles with DPF systems, using metallic fuel additive to assist regeneration, became available in Europe. These early examples of first generation DPF technology are forerunners of more advanced systems likely to be needed by many light-duty vehicles to meet Euro IV emissions legislation scheduled for 2005. Aspects requiring attention in second generation DPF systems are a compromise between regeneration kinetics and ash accumulation. The DPF regeneration event is activated by fuel injection, either late in the combustion cycle (late injection), or after normal combustion (post injection), leading to increased fuel consumption. Therefore for optimum fuel economy, the duration of regeneration and/or the soot ignition temperature must be minimised.
Technical Paper

NOx-Trap System Development and Characterization for Diesel Engines Emission Control

2000-10-16
2000-01-2910
Laboratory and vehicle tests were carried out to investigate behaviour and potentiality of NOx-trap catalytic system in Diesel conditions. Three main aspects were studied. The first one deals with the NOx storage capacity of adsorber under laboratory and vehicle conditions, especially regarding the influence of driving conditions. The second one focuses on the regenerability of different materials. At length, special attention is devoted to the sulphur poisoning rate. A representative laboratory test method was built up, to evaluate NOx storage capacity under Diesel conditions. It is shown that NOx adsorption occurs from 100 to 400°C. Low temperature activity (100 to 250°C) is conditioned by low NOx flow emission, mainly due to the use of high EGR rate. Higher temperatures lead to an increase in the intrinsic NOx Storage capacity of the material, but are also accompanied by high NOx concentration and space velocity.
Technical Paper

Impact of Sulphur on the NOx Trap Catalyst Activity-Poisoning and Regeneration Behaviour

2000-06-19
2000-01-1874
This presented paper deals with NOx trap sulphur poisoning and its regeneration. Sulphur poisoning has been studied with different SO2 gas concentrations under laboratory and engine test bench conditions. The sulphur poisoning studies have shown that the different NOx-traps available in the market have different behaviours toward SO2 poisoning and are all very sensitive to it. The results outline a non linear relationship of the NOx trap sulphur poisoning as a function of SO2 concentration. For instance, engine bench tests show that with a 50 and a 110ppm sulphur containing gasoline, a decrease of 50% in the NOx-trap storage capacity is respectively observed after 20 and 15 hours. With a gasoline containing 20ppm of sulphur, the same deactivation level is observed after 90 hours.
Technical Paper

Fleet Management of the Future

1998-10-19
98C059
This paper deals with fleet management systems and the means to integrate new communication and computer technologies to improve transportation companies efficiency. It focuses on the integration of embedded electronic systems for communication and data management through the use of on-board computers, taking the point of view of the truck manufacturer. It introduces the idea of making the vehicle a nod of a complete communication network. After briefly presenting fleet management problematic and some of the major existing solutions, it analyzes how new technologies can be integrated and what major advantages they would bring.
Technical Paper

Impact of Sulfur on NOx Trap Catalyst Activity - Study of the Regeneration Conditions

1998-10-19
982607
Laboratory and engine tests were carried out to describe the sulphur effect on the NOx adsorbers catalysts efficiency for gasoline lean burn engines. Two main aspects were studied. The first one deals with the NOx storage efficiency of the adsorber under laboratory conditions, especially regarding the SO2 gas phase concentration. The rate of sulfur storing is greatly affected by the SO2 gas concentration. While 6.5 hours are required to get from 70 % NOx reduction to only 35 % when the gas mixture contains 10 ppm SO2, it takes 20 hours with 5 ppm SO2 and more than 60 hours with the 2 ppm SO2 condition. The relationship between the loss in NOx trap performance and SO2 concentration appears to have an exponential shape. The same amount of sulphur (0.8 % mass) is deposited onto the catalyst within 10 hours with the feed gas containing 10 ppm of SO2 and within 50 hours with 2 ppm SO2. Nevertheless, It was shown that the loss in NOx-Trap efficiency is not the same in these two cases.
X