Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluation of Flow Paths due to Leakages of Flammable Liquids by the SPH Method: Application to Real Engines

2020-04-14
2020-01-1111
One of the most important safety issues for automotive engineering is to avoid any fire due to the ignition of flammable liquids, which may result from leaks. Fire risk is a combination of hot temperature, fast vaporisation and accumulation of vapor in a cavity. In IC engines, potentially flammable liquids are fuel and oil. To guarantee safety, flammable liquids must not come into contact with hot parts of the engine. Consequently, shields are designed to guide the flow path of possible leakages and to take any flammable liquid out of the hot areas. Simulation is a great help to optimize the shape of the shield by investigating a large number of possible leakages rapidly. Recent breakthroughs in numerical methods make it possible to apply simulations to industrial design concepts. The employed approach is based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) method.
Technical Paper

Influence of the Micro- and Macro-Structural Parameters on the Dynamic Behavior of Structures Made of Polymers Reinforced with Short Glass Fibers

2018-06-13
2018-01-1501
In order to design vehicles with diminished gCO2/km emissions level, car manufacturers aim at reducing the weight of their vehicles. One of the solutions advocated by the automotive industry consists in the replacement of metallic parts by lighter systems made of polymer reinforced composites. Unfortunately, the numerical simulations set to evaluate the vibratory and acoustic performances of systems made of this kind of materials are often not sufficiently effective and robust so that convincing test/simulation correlations are rarely met. Indeed, for polymer-based materials, numerous parameters affect the vibroacoustic behavior. On the one hand, it is well known that the viscoelastic properties (Storage -Young- and dissipative moduli) of polymers depend on the temperature, loading frequency and sometimes the humidity content.
Technical Paper

Robust Design of Acoustic Treatments for Powertrain Noise Radiation

2018-06-13
2018-01-1486
The reduction of the emitted noise from vehicles is a primary issue for automotive OEM’s due to the constant evolution of the noise regulations. As the noise generated by the powertrain remains one of the major noise sources at low/mid vehicle velocities, focus is set on efficient methods to control this source. Acoustic treatments and covers, made of multi-layered trimmed panels, are frequently selected to control the radiated sound and its directivity. In this context, numerical acoustic simulation is an attractive approach as efficient methodologies are available to study the acoustic radiation of powertrain units in working conditions (up to 6500 RPM nd frequencies up to 4 kHz). Moreover, handling acoustically-treated covers in such simulations has a low impact on the computational cost.
Technical Paper

Engine Knock Prediction and Evaluation Based on Detonation Theory Using a Quasi-Dimensional Stochastic Reactor Model

2017-03-28
2017-01-0538
Engine knock is an important phenomenon that needs consideration in the development of gasoline fueled engines. In our days, this development is supported by the use of numerical simulation tools to further understand and subsequently predict in-cylinder processes. In this work, a model tool chain based on detailed chemical and physical models is proposed to predict the auto-ignition behavior of fuels with different octane ratings and to evaluate the transition from harmless auto-ignitive deflagration to knocking combustion. In our method, the auto-ignition and emissions are calculated based on a new reaction scheme for mixtures of iso-octane, n-heptane, toluene and ethanol (Ethanol consisting Toluene Reference Fuel, ETRF). The reaction scheme is validated for a wide range of mixtures and every desired mixture of the four fuel components can be applied in the engine simulation.
Technical Paper

Experimental Study of Automotive Turbocharger Turbine Performance Maps Extrapolation

2016-04-05
2016-01-1034
Engine downsizing is potentially one of the most effective strategies being explored to improve fuel economy. A main problem of downsizing using a turbocharger is the small range of stable functioning of the turbocharger centrifugal compressor at high boost pressures, and hence the measurement of the performance maps of both compressor and turbine. Automotive manufacturers use mainly numerical simulations for internal combustion engines simulations, hence the need of an accurate extrapolation model to get a complete turbine performance map. These complete maps are then used for internal combustion engines calibration. Automotive manufacturers use commercial softwares to extrapolate the turbine narrow performance maps, both mass flow characteristics and the efficiency curve.
Technical Paper

Compressor Efficiency Extrapolation for 0D-1D Engine Simulations

2016-04-05
2016-01-0554
0D-1D codes allow researchers to obtain a prediction of the behavior of internal combustion engines with little computational effort. One of the submodels of such codes is devoted to the centrifugal compressor. This model is often based on the compressor performance maps, therefore requiring the extrapolation of the maps so that all possible operating conditions are covered. Particularly, a suitable extrapolation of isentropic efficiency map is sought. This work first examines different available methods for compressor efficiency extrapolation into off-design conditions. No method is found to provide satisfactory results at all extrapolated regions: low and high compressor speeds and low compression ratio at measured speeds. Hence, a new method is proposed and its accuracy is assessed with the aid of compressor off-design measurements.
Technical Paper

System Optimization for a 2-Stroke Diesel Engine with a Turbo Super Configuration Supporting Fuel Economy Improvement of Next Generation Engines

2014-11-11
2014-32-0011
The objective of this paper is to present the results of the GT Power calibration with engine test results of the air loop system technology down selection described in the SAE Paper No. 2012-01-0831. Two specific boosting systems were identified as the preferred path forward: (1) Super-turbo with two speed Roots type supercharger, (2) Super-turbo with centrifugal mechanical compressor and CVT transmission both downstream a Fixed Geometry Turbine. The initial performance validation of the boosting hardware in the gas stand and the calibration of the GT Power model developed is described. The calibration leverages data coming from the tests on a 2 cylinder 2-stroke 0.73L diesel engine. The initial flow bench results suggested the need for a revision of the turbo matching due to the big gap in performance between predicted maps and real data. This activity was performed using Honeywell turbocharger solutions spacing from fixed geometry waste gate to variable nozzle turbo (VNT).
Technical Paper

The Potential of Highly Premixed Combustion for Pollutant Control in an Automotive Two-Stroke HSDI Diesel Engine

2012-04-16
2012-01-1104
An innovative alternative to overcome the load limits of the early injection highly premixed combustion concept consists of taking advantage of the intrinsic characteristics of two-stroke engines, since they can attain the full load torque of a four-stroke engine as the addition of two medium load cycles, where the implementation of this combustion concept could be promising. In this frame, the main objective of this investigation focuses on evaluating the potential of the early injection HPC concept using a conventional diesel fuel combined with a two-stroke poppet valves engine architecture for pollutant control, while keeping a competitive engine efficiency. On a first stage, the HPC concept was implemented at low engine load, where the concept is expected to provide the best results, by advancing the start of injection towards the compression stroke and it was confirmed how it is possible to reduce NOX and soot emissions, but increasing HC and CO emissions.
Technical Paper

Fatigue Analysis of Conrod Bearing

2011-04-12
2011-01-0197
For many years, bearing suppliers have been using the specific pressure to evaluate the fatigue risk of conrod bearings. However, modern engines have made the bearing more sensitive to various phenomena such as the thermal expansion or the elasticity of the conrod housing. These effects modify the stresses in the bearing layers and consequently fatigue risk. In this paper, we propose a new way to determine the bearing fatigue resistance. To achieve that, we analyze the elastic and plastic behavior of the bearing along the engine life. We detail and provide the analytical relationships which determine stresses in the overlay and in the substrate of the bearing in order to analyze their fatigue resistance. Various physical loads are taken into account such as the thermal load, the hydrodynamic pressure field, the fitting load, the free spread load. A good knowledge of the relationships between those physical phenomena helps to understand the mechanical behavior of the bearing.
Journal Article

Towards an Innovative Combination of Natural Gas and Liquid Fuel Injection in Spark Ignition Engines

2010-05-05
2010-01-1513
In order to address the CO₂ emissions issue and to diversify the energy for transportation, CNG (Compressed Natural Gas) is considered as one of the most promising alternative fuels given its high octane number. However, gaseous injection decreases volumetric efficiency, impacting directly the maximal torque through a reduction of the cylinder fill-up. To overcome this drawback, both independent natural gas and gasoline indirect injection systems with dedicated engine control were fitted on a RENAULT 2.0L turbocharged SI (Spark Ignition) engine and were adapted for simultaneous operation. The main objective of this innovative combination of gas and liquid fuel injections is to increase the volumetric efficiency without losing the high knocking resistance of methane.
Journal Article

Establishing New Correlations Between In-Cylinder Charge Motion and Combustion Process in Gasoline Engines Through a Numerical DOE

2010-04-12
2010-01-0349
This paper presents an innovative methodology and the corresponding results of a study whose goal is to identify the main links between in-cylinder charge motion and the development of combustion without taking into consideration how to create this charge motion (shape of the intake ducts, valve timing, etc …). During this study a specific methodology was developed and used. It is based on the calculation of a “3D numerical test bench” matrix planned following the Design Of Experiments method. Many aerodynamic configurations obtained by combining the three main aerodynamic motions with several different intensities (tumble, cross-tumble or swirl) at the intake valve closing were calculated.
Technical Paper

Multi-Fuel Fuel Processor and PEM Fuel Cell System for Vehicles

2007-04-16
2007-01-0692
An ongoing program has made further technology advances in onboard fuel processors for use with PEM fuel cells. These systems are being explored as an option for reducing vehicle CO2 emissions and for other benefits such as fuel-flexibility that would allow vehicles to operate on a range of bio-fuels, conventional fuels, and synthetic fuels to support diversification and/or “greening” of the fuel supply. As presented at the 2006 SAE World Congress1, Renault and Nuvera Fuel Cells previously developed fuel processor technology that achieved automotive size (80 liters) and power (1.4 g/s of hydrogen production) and reduced the startup time from more than 60 minutes to between 1.4 and 3.7 minutes to have CO <100 ppm. This paper presents an overview of the multi-fuel fuel cell power plant along with advances in the fuel processing system (FPS) technology and the testing results obtained since those reported in 2006.
Technical Paper

Advanced Onboard Fuel Processor for PEM Fuel Cell Vehicles

2006-04-03
2006-01-0216
To reduce greenhouse gas emissions such as CO2, automakers are actively pursuing alternative propulsion systems. Improvements to current engine technology are being investigated along with new power plant technologies. Fuel Cell Vehicles offer an exciting option by producing electric power through a reaction that combines hydrogen and oxygen to make water. However, hydrogen storage onboard vehicles and construction of an expensive hydrogen distribution and fueling infrastructure remain as challenges today. In addition, greenhouse gas emissions from the production of hydrogen must be considered since most hydrogen is currently produced from non-renewable sources. While these issues are being worked on, Renault has chosen to pursue a fuel cell vehicle with a fuel processor that converts gasoline and other liquid fuels to hydrogen onboard the vehicle.
Technical Paper

Impact of Gasoline RON and MON on a Turbocharged MPI SI Engine Performances

2004-06-08
2004-01-2001
This paper presents a combustion study of gasoline anti-knock quality effects on turbocharged MPI SI engine performances. A comparative analysis between many fuels covering various Research Octane Number (RON), Motor Octane Number (MON) and sensitivity (RON-MON) is described. The study was conducted on steady state test bench, using a four cylinder 2 L engine. In turbocharged gasoline engines, knock resistance is more than ever a crucial issue to achieve high performance and good customer's consumption level. Octane level is therefore a fuel key parameter. Considering thermodynamic aspects of such combustion at full load, performances, fuel consumption and engine thermal strains are evaluated for each tested fuel. An important influence of RON at iso sensitivity was observed. Because of the extreme conditions met on turbocharged gasoline engine, the impact of RON is exacerbated on such engine and illustrates the great benefits of an increase RON fuel.
Technical Paper

Development of an Onboard Fuel Processor for PEM Fuel Cell Vehicles

2004-03-08
2004-01-1473
Reduction of pollutants and greenhouse gas emissions is one of the main objectives of car manufacturers and innovative solutions have to be considered to achieve this goal. Electric vehicles, and in particular Fuel Cell Electric Vehicles, appear to be a promising alternative. Renault is therefore investigating the technical and economic viability of a Fuel Cell Electric Vehicle (FCEV). A basic question of this study is the choice of the fuel that will be used for this kind of vehicle. Liquid fuels such as gasoline, diesel, naphtha, and gas-to-liquid can be a bridge for the introduction of fuel cell technologies while hydrogen infrastructure and storage are investigated. Therefore, multi-fuel Fuel Processor Systems that can convert liquid fuels to hydrogen while meeting automotive constraints are desired. Renault and Nuvera have joined forces to tackle this issue in a 3-year program where the objective is to develop and to integrate a Fuel Processor System (FPS) on a vehicle.
Technical Paper

Analysis of the Dynamics of a Hydraulic Control Circuit of an Automatic Gearbox

2003-03-03
2003-01-0317
The description of the supply pressure hydraulic circuit and the couplings between its components are presented. A comparison between simulations and experiments is carried out. Using some linear facilities, it is possible to conclude that the low frequency modes mainly correspond to the wave effects of hydraulic lines which connect valves to each other. In order to maintain a pressure in the supply circuit, an electronic pressure control is necessary. The design of a control law needs to build different linear models for different levels of pressure since the system is very non linear. Three transfer functions are found for three pressure levels. These transfer functions are very similar to the ones used by the automatic control department and obtained by experiments. Using these transfer functions it is possible to design the control law.
Technical Paper

Ultra Light Compact Economical Vehicle Concept

2002-07-09
2002-01-2071
State of the art demonstrates that weight of vehicle increases with length of car body. Integration of powertrain in mid rear underfloor location enables to shorten car body by more than 0,5m and to save partially heavy longitudinal members. Underfloor integration of power train induces higher stance floor for more conviviality of passengers visibility. Safety factors are improved by lowering gravity centre, better repartition of front / rear masses during braking, easier management of crash by straighter and higher front longitudinal members and free front space. Space frame architecture simplifies light weight technologies application by using 2D bended aluminum profiles. Low investment is ensured by minimising castings application to suspension attachments and interlinking upperbody to underbody. Floor and external panels are designed for aluminum sheet stampings.
Technical Paper

Euroncap~Views and suggestions for improvements

2001-06-04
2001-06-0087
Since its creation in 1996, Euroncap evaluated more than 80 cars, ranging from small and city cars, to larger vehicles such as executive cars and people carriers (MPVs). The testing protocol comprises 3 types of tests: a frontal offset test against a deformable barrier, a 90° lateral impact with a moving deformable barrier, and - since March 2000 - a pole side impact. In addition a set of subsystem tests with impactors on the bonnet and the front face of the car are conducted to assess the pedestrian protection. The aim of this paper is to review the testing and assessment protocols and to compare them with those used in other NCAP systems in the USA, Australia, Japan and Europe. In particular, important Euroncap issues such as the stiffness of heavier vehicles that could be increased in the future, and the nature and weight of the modifiers are discussed. Ways to improve the system are suggested in relation with real-world accident data.
Technical Paper

Influence of Both Catalyst Geometry and Fuel Sulfur Content on NOX Adsorber Poisoning

2001-05-07
2001-01-1934
NOx adsorbers are very sensitive to sulfur poisoning and future fuel standards are unlikely to be sufficient to prevent the system from requiring periodic desulfation procedures. The purpose of this paper is to present the effects of low fuel sulfur content such as 50 ppm and 10 ppm on the NOx adsorber efficiency for a diesel application. Through this study, the influence of the substrate cell geometry has also been assessed. The use of a 10 ppm sulfur fuel is not enough to maintain, at a high level, the NOx adsorber performance during a 40,000 km aging test. The desulfation criterion (efficiency loss of 30%) is reached after the first 16,000 km. However, the desulfation operation is not enough to recover the initial catalyst performance and the poisoning velocity increases as the catalyst ages. The hexagonal cell substrate catalyst is less sensitive to sulfur poisoning than a square cell substrate catalyst so that its desulfation frequency is much lower.
Technical Paper

Impact of Sulphur on the NOx Trap Catalyst Activity-Poisoning and Regeneration Behaviour

2000-06-19
2000-01-1874
This presented paper deals with NOx trap sulphur poisoning and its regeneration. Sulphur poisoning has been studied with different SO2 gas concentrations under laboratory and engine test bench conditions. The sulphur poisoning studies have shown that the different NOx-traps available in the market have different behaviours toward SO2 poisoning and are all very sensitive to it. The results outline a non linear relationship of the NOx trap sulphur poisoning as a function of SO2 concentration. For instance, engine bench tests show that with a 50 and a 110ppm sulphur containing gasoline, a decrease of 50% in the NOx-trap storage capacity is respectively observed after 20 and 15 hours. With a gasoline containing 20ppm of sulphur, the same deactivation level is observed after 90 hours.
X