Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Initial Oxidation Activity of Noble Metal Automotive Exhaust Catalysts

1973-02-01
730570
The use of relatively small catalytic converters containing alumina-supported platinum (Pt) and palladium (Pd) catalysts to control exhaust emissions of hydrocarbons (HC) and carbon monoxide (CO) was investigated in full-scale vehicle tests. Catalytic converters containing 70-80in3 of fresh catalyst were installed at two converter locations on the vehicle. Carburetion was richer than stoichiometric, with air-fuel ratios (A/F) comparable to those proposed for dual-catalyst systems containing an NOx reduction catalyst. The vehicle was equipped with exhaust manifold air injection. Homogeneous thermal reaction in the exhaust manifolds played a significant role in the overall control of HC and CO. Four Pt catalysts, three Pd catalysts, and one Pt-Pd catalyst were prepared and evaluated. Total metal loadings were varied 0.01-0.07 troy oz. Hydrocarbon conversion efficiencies varied 62-82%, measured over the 1975 cold-hot start weighted Federal Test Procedure.
Technical Paper

Effects of Engine Oil Composition on the Activity of Exhaust Emissions Oxidation Catalysts

1973-02-01
730598
Platinum, palladium, and copper-chromium oxidation catalysts for exhaust emission control were exposed to exhaust gases from a steady-state engine dynamometer test in which the amount of oil consumed per unit volume of catalyst was high. When unleaded gasoline (0.004 Pb g/gal, 0.004 P g/gal) was used, conventional SE oil caused somewhat greater loss of catalyst activity than an ashless and phosphorus-free (“clean”) oil. Chemical analysis of the catalyst indicated that phosphorus from the conventional oil was probably responsible for the difference. However, a test run with low-lead (0.5 Pb g/gal, 0.004 P g/gal) gasoline and “clean” oil caused much greater catalyst activity deterioration than either of the tests with unleaded gasoline.
X